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Figure 1. Novel view synthesis and cross-view image matching. The first row shows that MOVIS generalizes to different datasets on
novel view synthesis (NVS). We also show visualizations of cross-view consistency compared with Zero-1-to-3 [8] and ground truth by
applying image-matching. MOVIS can match a significantly greater number of points, closely aligned with the ground truth.

Abstract

Repurposing pre-trained diffusion models has been proven
to be effective for NVS. However, these methods are mostly
limited to a single object; directly applying such methods
to compositional multi-object scenarios yields inferior re-
sults, especially incorrect object placement and inconsistent
shape and appearance under novel views. How to enhance
and systematically evaluate the cross-view consistency of
such models remains under-explored. To address this issue,
we propose MOVIS to enhance the structural awareness of
the view-conditioned diffusion model for multi-object NVS
in terms of model inputs, auxiliary tasks, and training strat-
egy. First, we inject structure-aware features, including
depth and object mask, into the denoising U-Net to en-
hance the model’s comprehension of object instances and

their spatial relationships. Second, we introduce an aux-
iliary task requiring the model to simultaneously predict
novel view object masks, further improving the model’s ca-
pability in differentiating and placing objects. Finally, we
conduct an in-depth analysis of the diffusion sampling pro-
cess and carefully devise a structure-guided timestep sam-
pling scheduler during training, which balances the learn-
ing of global object placement and fine-grained detail re-
covery. To systematically evaluate the plausibility of syn-
thesized images, we propose to assess cross-view consis-
tency and novel view object placement alongside existing
image-level NVS metrics. Extensive experiments on chal-
lenging synthetic and realistic datasets demonstrate that
our method exhibits strong generalization capabilities and
produces consistent novel view synthesis, highlighting its
potential to guide future 3D-aware multi-object NVS tasks.



1. Introduction

Novel view synthesis (NVS) from a single image is chal-
lenging as it requires understanding complex spatial struc-
tures from a single viewpoint while being able to extrapo-
late consistent and plausible content for unobserved areas.

Recently, one prominent line of research [1, 3, 5–7, 9,
11, 15, 17, 18] has achieved compelling image-to-3D re-
sults by building on insights from Zero-1-to-3 [8]: repur-
posing a pre-trained diffusion model as a novel view synthe-
sizer by fine-tuning on large 3D object datasets can provide
promising 3D-aware prior for image-to-3D tasks. However,
whether this paradigm can be effectively extended to the
multi-object level to facilitate more complex tasks like re-
constructing an indoor scene remains unclear. In Fig. 1, we
visualize cross-view matching results of directly applying
novel view synthesizers [8] in multi-object scenarios. We
believe that the lack of structural awareness is the primary
reason for the disappearance, distortion, incorrect position
and orientation of objects under novel views.

Our paper seeks to address the question: How to enhance
the structural awareness of current diffusion-based novel
view synthesizers? We first propose injecting structure-
aware features, i.e., depth and object mask, from the input
view as additional inputs. Secondly, we utilize the predic-
tion of novel view object masks as an auxiliary task dur-
ing training for the model to differentiate object instances,
laying a solid foundation for geometry and appearance re-
covery. Finally, through an in-depth analysis of the model’s
inference process, we highlight the importance of revising
the noise timestep sampling schedule, which influences the
learning focus. To endow the view-conditioned diffusion
model with both capabilities, we propose a structure-guided
timestep sampling scheduler that prioritizes larger timesteps
in the initial stage, gradually decreasing over time to bal-
ance these two conflicting inductive biases. This design is
fundamental to our proposed model’s effectiveness in ad-
dressing the complexity of multi-object level NVS tasks.

We additionally evaluate novel-view object mask and
cross-view structural consistency apart from the existing
NVS metrics. Specifically, we employ image-matching
techniques [4, 16] to compare the input-view image with
both the ground-truth and synthesized novel-view images.
Extensive experiments demonstrate that our method excels
at multi-object level NVS in indoor scenes, achieving con-
sistent object placement, shape, and appearance. Notably,
it exhibits strong generalization capabilities for generating
novel views on unseen datasets.

2. MOVIS

Our proposed method extends view-conditioned diffusion
models to multi-object level, as illustrated in Fig. 2. The
model leverages a pre-trained Stable Diffusion [12] and

concatenates the 2D structural information from the input
view with a noisy target image as input. Additionally, it in-
tegrates a pre-trained image encoder [10] to capture seman-
tic information, which is injected into the network through
cross-attention alongside the relative camera pose. More-
over, it predicts novel view mask simultaneously as an aux-
iliary task to aid global object placement learning.

Structure-Aware Feature Amalgamation We use depth
maps and object masks as proxies for image-level structural
information. Object masks provide a rough concept of ob-
ject placement and shape as well as distinguishing distinct
object instances, while depth maps encode the rough rela-
tive position and shape of the visible objects. Concretely
speaking, we normalize the image rendered with object in-
stance IDs of the input view to create a continuous object
mask image M̂. We then replicate the depth map D̂ and
object mask image M̂ into three channels to simulate RGB
images. These two structural-aware feature images, along
with the input image x̂0, are passed into a VAE to obtain
latent features, which will be later concatenated with the
noisy target view image xt as input to the denoising U-Net.
After introducing these additional conditions, the learning
objective of MOVIS becomes:

E[||ϵθ(αtx0 + σtϵ, t, CSA(x̂0, R, T, D̂, M̂))− ϵ||22]. (1)

We use CSA(·) as a shorthand for the structure-aware view-
conditioned feature throughout the paper.

Auxiliary Novel View Mask Prediction Task To encour-
age the model to better grasp overall structure, we pro-
pose leveraging structural information (i.e., mask image)
prediction under the target view as an auxiliary task. Our
approach draws inspiration from classifier guidance [2],
where a classifier pϕ(y|xt, t) guides the denoising pro-
cess of image xt to meet the criterion y via incorporat-
ing the gradient ∇xt

log pϕ((y|xt, t)) during the inference
process. Similarly, to improve the model’s ability to learn
compositional structure, particularly in synthesizing novel
view plausible object placement, we introduce an auxil-
iary task during training: predicting object mask images
Mt ∼ p(Mt|xt, t, CSA(·)) under target view. This pre-
diction is conditioned on the noisy target-view image xt,
timestep t and input-view structure-aware feature CSA(·),
using the final layer of the denoising U-Net. We jointly
train the mask predictor and denoising U-Net following:

E[||ϵθ(αtx0+σtϵ, t, CSA(·))−ϵ||22+γ||Mtgt−Mt||22], (2)

where we use Mtgt to denote the GT target-view image.

Structure-Guided Sampling Scheduler We provide an
in-depth analysis of the inference process of multi-object
novel view synthesis, where we adopt a DDIM [14] sam-
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Figure 2. Overview of MOVIS. Our model performs NVS from the input image and relative camera change. We introduce structure-aware
features as additional inputs and employ mask prediction as an auxiliary task (Sec. 2). The model is trained with a structure-guided timestep
sampling scheduler (Sec. 2) to balance the learning of global object placement and local detail recovery.
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Figure 3. Qualitative results of NVS and cross-view matching. Our method generates plausible novel-view images across various
datasets, surpassing baselines regarding object placement, shape, and appearance. In cross-view matching, points of the same color
indicate correspondences between the input and target views. We achieve a higher number of matched points with more precise locations.

pler:

xt−1 =
√
αt−1x

′

0 +
√
1− αt−1 − σ2

t · F+ σtϵt. (3)

where x
′

0 = (xt−
√
1− αt ·F)/

√
αt. We use F as a short-

hand for ϵθ(xt, t, CSA(·)) and ϵt ∼ N (0, I). We examine



Table 1. Quantitative results of multi-object NVS, Object Placement, and Cross-view Consistency. We evaluate on C3DFS test set.

Dataset Method
Novel View Synthesis Placement Cross-view Consistency

PSNR(↑) SSIM(↑) LPIPS(↓) IoU(↑) Hit Rate(↑) Dist(↓)

C3DFS

ZeroNVS 10.704 0.533 0.481 21.6 1.4 135.2
Zero-1-to-3 14.255 0.771 0.302 33.7 4.4 86.7
Zero-1-to-3† 14.811 0.794 0.283 34.4 1.3 117.9

Free3D 14.390 0.774 0.297 34.2 4.8 83.6
Ours 17.432 0.825 0.171 58.1 19.3 44.9

Timesteps
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Figure 4. Visualization of inference. The early stage of the denoising process focuses on restoring global object placements, while the
prediction of object masks requires a relatively noiseless image to recover fine-grained geometry. This motivates us to seek a balanced
timestep sampling scheduler during training. The model trained w/ shift yields better mask prediction and thus recovers an image with
more details and sharp object boundary. The w/o shift here refers to not shifting the µ value.

the predicted x
′

0 (as in Eq. (3)) and the predicted mask im-
age Mt at various timesteps during the inference process as
they offer direct visualizations for analysis in Fig. 4.

In Fig. 4, we observe that a blurry image, which indi-
cates the approximate placement of each object, is quickly
restored in the early stages (i.e., larger t) of the inference
process. This suggests that global structural information is
prioritized for the model to learn during this stage. Accu-
rate object placements are crucial for synthesizing reason-
able novel view images. This underscores the importance of
training the model with a larger t during the initial training
periods. Conversely, a mask with a clear boundary is not
predicted until a later stage of the sampling process (i.e.,
smaller t). This is because accurate mask prediction de-
pends heavily on a relatively noiseless image. Therefore, it
is essential to train the model with a smaller t during later
training periods. We propose to adjust the original timestep
sampling process to:

t ∼ U(1,1000) → t ∼ N (µ(s), σ), (4)

where µ(s) = µlocal + (µglobal − µlocal) · s
Ts

and s denotes
the model training iteration, Ts denotes the total number of
training steps, σ = 200 is a constant variance. We sample
the timestep t from a Gaussian distribution with mean µ(s)
following a linear decay from a large value µglobal = 1000
to a small value µlocal = 500.

3. Experiments
We benchmark our method against various object-level
baselines including Zero-1-to-3 [8] and Free3D [18] as well
as scene-level ZeroNVS [13], using NVS metrics and cross-
view consistency metrics. Fig. 3 presents qualitative results
of multi-object NVS and cross-view matching visualization
on different datasets, with quantitative results in Tab. 1. We
summarize the following key observations:
1. Our method realizes the highest PSNR and gener-

ates high-quality images under novel views, closely
aligned with the ground truth images, especially regard-
ing novel-view object placement (position and orienta-
tion), shape, and appearance. In contrast, the baseline
models struggle to accurately capture the compositional
structure under novel views. For example, in the first
row, the red bed is incorrectly oriented in Zero-1-to-3
and is either missing or distorted in other baselines.

2. From the visualized cross-view matching results and the
metrics in Tab. 1, it is evident that our method signif-
icantly outperforms the baseline approaches in Cross-
view Consistency. It achieves a much higher IoU and
Hit Rate while exhibiting a considerably lower match-
ing distance. The visualized results are consistent with
the metrics, further validating our method’s accuracy in
capturing cross-view structural consistency.

3. Our model exhibits strong generalization capabilities on
unseen datasets, e.g., Objaverse.
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