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Abstract

Generative models, with their success in image and video
generation, have recently been explored for synthesizing
effective neural network weights. These approaches take
trained neural network checkpoints as training data, and
aim to generate high-performing neural network weights dur-
ing inference. In this work, we examine four representative
methods on their ability to generate novel model weights,
i.e., weights that are different from the checkpoints seen
during training. Surprisingly, we find that these methods
synthesize weights largely by memorization: they produce
either replicas, or at best simple interpolations, of the train-
ing checkpoints. Current methods fail to outperform simple
baselines, such as adding noise to the weights or taking a
simple weight ensemble, in obtaining different and simul-
taneously high-performing models. Our findings provide a
realistic assessment of what types of data current generative
models can model, and highlight the need for more careful
evaluation of generative models in new domains.

1. Introduction

Generative models have advanced significantly in recent
years, achieving remarkable results in image synthesis [17,
39, 41]. They demonstrate exceptional photorealism, driv-
ing widespread applications in commercial art and graphics.
Beyond static images, generative video models [1, 4] have
recently gained attention, achieving impressive consistency
and coherence in video synthesis.

Building on this success, recent studies [12, 35, 43, 50]
have extended the use of generative models to synthesize
weights for neural networks. These methods collect network
checkpoints trained with standard gradient-based optimiza-
tion, and apply generative models to learn the weight distri-
butions and produce new checkpoints, without direct access
to the training data of the original task [5, 23, 25, 30]. The
weights generated by these methods can often perform com-
parably to conventionally trained weights: they achieve high
test accuracy in image classification models and high-quality
3D shape reconstructions in neural field models, across di-

verse datasets and model architectures.
In this study, we seek to answer an important question:

have the generative models learned to produce meaningfully
distinct weights that generalize beyond the training set of
checkpoints, or do they merely memorize and reproduce the
training data? While prior work has focused on evaluating
these methods based on the performance of the generated
models on the downstream tasks, this question is critical to
understanding both the fundamental mechanisms and the
practicality of these methods.

To investigate this, we analyze four representative weight
generation methods [12, 35, 43, 50], covering different types
of generative models and downstream tasks. We first find
the nearest training checkpoint to each generated checkpoint,
to assess the novelty in the generated weight values. Sur-
prisingly, almost all generated checkpoints closely resemble
specific training checkpoints, showing far less novelty than
a new model trained from scratch.

Beyond weight space similarity, we also examine the
behaviors of generated models and their nearest training
models. We compare the decision boundaries for classifica-
tion models and the reconstructed 3D shapes for neural field
models. In both cases, we find that these generated models,
which are very close to training models in weight space, also
exhibit highly similar outputs as the training ones.

Further, we show that current generative modeling meth-
ods offer no advantage over simple baselines for creating
new model weights, in terms of producing models that dif-
fer from training checkpoints in behavior while maintaining
model performance. These baselines generate new weights
by adding Gaussian noise to training weights or interpolating
between them. To quantify how novel a generated model’s
behavior is relative to the behaviors of the training models,
we compute a similarity metric for models based on their
overlap in prediction errors on the test set.

In summary, our analysis reveals clear patterns of mem-
orization in almost all generated checkpoints from current
methods, both in weight space and model behavior. We find
that the generated weights largely replicate or interpolate
the training weight data. This stands in stark contrast to the
versatility and strong generalization capabilities [33, 45] of
image generation models. As generative modeling continues
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Figure 1. Generated weights highly resemble training weights. For each method, we display three heatmaps, showing weight values for
64 randomly selected parameter indices. In each heatmap, the top row shows a random generated checkpoint, and the three rows below the
red line show its three nearest training checkpoints. At least one training checkpoint is nearly identical to each generated checkpoint.
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Figure 2. Generated checkpoints are closer to training checkpoints than training checkpoints are to one another, except for p-diff.
This indicates that generated weights have lower novelty than a new model trained from scratch. The red histograms and blue curves
represent the distributions of the L2 distances to nearest training checkpoints (excluding self-comparisons).

to expand into new domains and modalities [9, 40, 54], our
findings highlight the importance of evaluating memoriza-
tion in generated outputs, beyond standard quality metrics.

2. Background
Generative models are recently used to synthesize network
weights, producing models that perform comparably to those
from standard training, without additional gradient-based
optimization. In this study, we analyze four representative
methods under their primary experimental setups.

Hyper-Representations [42, 43] generate weights using
an autoencoder trained on checkpoints from classification
models with identical architectures but different initializa-
tions. After training, kernel density estimation (KDE) is
applied to the latents of the best-performing checkpoints.
New weights are then generated by sampling a latent vector
from the KDE-estimated distribution and decoding it.

G.pt [35] is a conditional diffusion model that can gen-
erate new weights for a predefined architecture, given input
weights and a target loss for the generated weights. It is
trained on millions of model checkpoints from tens of thou-
sands of training runs, each paired with corresponding test
losses. Once trained, G.pt produces effective weights from
randomly initialized weights and a minimal, fixed target loss.

HyperDiffusion [12] trains an unconditional diffusion
model on neural field MLPs that represent 3D or 4D
shapes [5]. New shapes are generated by sampling a new set
of MLP weights from the diffusion model and reconstructing
the mesh represented by the MLP.

P-diff [50] trains an unconditional latent diffusion model
on 300 neural network checkpoints to generate new weights.
These checkpoints are saved at consecutive steps during an
additional training epoch of the same base image classifica-
tion model, after it has converged.

3. Memorization in Weight Generation
To evaluate the novelty of generated model weights, we
compare them to the original weights used to train the weight
generation models, analyzing both their weight values and
model behaviors in comparison with various baselines.

3.1. Memorization in Weight Space
A natural first step in evaluating the novelty of generated
weights is to find the nearest training weights to each gen-
erated checkpoint under L2 distance, and check for repli-
cations. However, depending on the method, permutations
of weight matrices in training checkpoints or autoencoder
reconstructions of training weights must also be considered.

For methods (e.g., G.pt) that apply function-preserving
weight permutation to augment data during training, we
enumerate all possible permutations of training weights to
identify the closest match for each generated checkpoint.
Meanwhile, Hyper-Representations’ autoencoder cannot ac-
curately reconstruct training weights, degrading model accu-
racy by 13.9% on average. Thus, we compare its generated
weights with the reconstructed training weights instead.

Weight heatmap. For each weight generation method,
we visually inspect the three nearest training checkpoints
for each of three randomly selected generated checkpoints
using a heatmap of weights, shown in Figure 1 (more ex-
amples in Appendix C.1). We observe that, for all sampled
generated checkpoints across all methods, there is always
at least one training checkpoint that closely resembles the
generated checkpoint. Further, all of p-diff’s training and
generated checkpoints have nearly identical weight values.
This potentially results from p-diff’s training checkpoints
being saved consecutively from the same training run.

Distance to training weights. In addition to visually
inspecting weight values, we identify quantitative trends that
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Figure 3. Generated models produce highly similar outputs to their nearest training models. Each row shows the decision boundaries
or reconstructed 3D shapes of a randomly selected generated checkpoint (“generated”) and its nearest training checkpoint (“training”). For
p-diff models trained on CIFAR-100, decision boundaries are shown for ten randomly selected classes.

0.6 0.7 0.8 0.9 1.0
maximum similarity

15

45

75

ac
cu

ra
cy

 (%
)

training
noise=0.02

generated
noise=0.04

(a) Hyper-Representations

0.4 0.6 0.8 1.0
maximum similarity

91.0

93.5

96.0

ac
cu

ra
cy

 (%
)

training
noise=0.05

generated
noise=0.1

(b) G.pt

0 0.03 0.05 0.08 0.10
min dist. to training set

0

0.05

0.10

0.15

m
in 

dis
t. 

to
 te

st 
se

t

training
noise=0.02

generated
noise=0.04

(c) HyperDiffusion

0.82 0.90 0.98
maximum similarity

75

76

77

78

ac
cu

ra
cy

 (%
)

training
noise=0.06

generated
noise=0.12

(d) P-diff

Figure 4. Weight generation methods do not outperform noise addition in the accuracy-novelty trade-off, except for p-diff. The
novelty of a generated model is measured by its maximum error similarity or minimum mesh distance to training checkpoints, where lower
maximum similarity and higher minimum distance are preferred. We show 100 random samples for each checkpoint type.

differentiate sampling a generated checkpoint from training
a new model using standard gradient-based optimization.

For each training and generated checkpoint, we compute
its L2 distance to the nearest training checkpoint and present
the distance distributions in Figure 2. For all methods except
p-diff, the generated checkpoints are much closer to the train-
ing checkpoints than training checkpoints are to one another.
This indicates that the weight generation methods produce
outputs with lower novelty than training a new model from
scratch. We note that the training checkpoints used in these
methods are saved from independent training runs.

For p-diff, we observed that the training checkpoints are
much closer to each other than generated checkpoints are
to their nearest training checkpoints. The low distances
between training checkpoints may be expected, since they
are saved from the same training run at consecutive steps.

3.2. Memorization in Model Behaviors
In Section 3.1, we showed that generated weights highly
resemble the training weights. However, similar weights can
still yield different behaviors. Here, we compare the behav-
iors of generated models to the behaviors of their nearest
training models in weight space. We also assess whether
generative modeling methods differ from a simple noise-
addition baseline for creating new weights.

Visualizations of model outputs. To understand the be-

haviors of generated image classification models, we project
the high-dimensional image datasets onto two principal com-
ponents, and then visualize the decision boundaries of these
classifiers. For HyperDiffusion, we reconstruct 3D shapes
from the neural field models it generates.

For each method, we randomly select three generated
checkpoints (additional examples in Appendix C.2) and iden-
tify their nearest training checkpoints in weight space using
the L2 metric, as in Section 3.1. Figure 3 presents the cor-
responding decision boundaries or 3D shapes. We find that
generated models and their nearest training models produce
highly similar predictions in image classification, as indi-
cated by the nearly identical decision regions across all class
labels. Similarly, the neural field models generated by Hyper-
Diffusion also reconstruct to nearly identical 3D shapes as
training ones, with visible differences only in minor details.

Metric for novelty. For generated weights to represent
generalization, they need to behave sufficiently differently
from training weights while maintaining high performance.
To quantify the novelty of a generated classification model
checkpoint, we adopt the model similarity metric from Wang
et al. [50], which measures the Intersection over Union (IoU)
of incorrect predictions between two model checkpoints.
The formal definition of this metric is in Appendix D.1.

To assess a checkpoint’s novelty, we compute its similar-
ity with each training checkpoint and take the maximum sim-
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Figure 5. Distributions of five random parameters from the weight matrix of the first layer in p-diff checkpoints. The generated weights
are centered around the mean of the training weights, suggesting they may be interpolations. More details are in Appendix E.2.

ilarity. A lower maximum similarity value indicates greater
novelty, as it means the generated model’s error patterns
differ more from all training models.

For HyperDiffusion, which generates neural field models
rather than classifiers, we use Chamfer Distance (CD), a
standard metric for 3D shapes. A lower minimum CD to
the test shapes indicates better shape quality, analogous to
higher classification accuracy. A higher minimum CD to
the training shapes suggests greater novelty, akin to lower
maximum similarity in classification models.

Noise-addition baseline. We compare the accuracy and
maximum similarity of the generated checkpoints against a
baseline that simply adds Gaussian noise to training weights.
The weight generation methods are considered superior if,
at the same level of novelty relative to training models, they
produce models with better performances than noise addi-
tion. Figure 4 shows the accuracy and maximum similarity
distributions for training, generated, and noise-added models.
For each weight generation method, the noise amplitudes
are chosen so that the maximum similarity of noise-added
models matches that of generated models.

Accuracy-novelty trade-off. As shown in Figure 4, for
G.pt and Hyper-Representations, noise-added models often
achieve comparable or even higher accuracy than generated
models at the same maximum similarity to training models.
Similarly, for HyperDiffusion, the distributions of the min-
imum CD to training and test shapes show no significant
difference between generated and noise-added MLPs. These
results suggest that the weight generation methods may not
offer further benefits than simply adding noise to the training
weights. An exception is p-diff, where generated models
achieve a better trade-off between maximum similarity and
accuracy than noise-added models.
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Figure 6. P-diff generates weights with model behaviors (left)
and values (right) similar to interpolations of training weights.
We compare them to two baselines: averaging training weights
(“averaged”) and sampling from a Gaussian distribution fitted to
training weights (“gaussian”). Model behavior is evaluated via
accuracy and maximum similarity; t-SNE visualizes weight values.

3.3. Understanding P-diff’s Accuracy-Novelty
Trade-off

As observed in Section 3.2, different from the other methods,
p-diff achieves a better trade-off between the novelty and
accuracy of generated models compared to the noise-addition
baseline. The generated weights even surpass the training
weights in accuracy (Figure 4d).

Observations. To investigate this, we examine the distri-
bution of parameter values in generated and training models
in Figure 5. The generated weight values for parameters tend
to concentrate around the average of the training values. Av-
eraging the weights of multiple models fine-tuned from the
same base model is known to lead to improved accuracy [51].
Thus, p-diff may achieve higher accuracy in its generated
models by interpolating its training checkpoints.

Interpolation baselines. To explore this hypothesis, we
generate new models using two approaches that approximate
the interpolations of the training checkpoints: (1) averaging
the weights of 16 randomly selected training checkpoints
(“average”) and (2) fitting a Gaussian distribution to the
training weight values in each parameter dimension and
sampling from these distributions (“gaussian”).

Behaviors and weights. The left subplot of Figure 6
shows that the accuracy and maximum similarity of the in-
terpolation models closely match those of p-diff. The right
subplot of Figure 6 visualizes the weight distributions using
t-SNE [49]. The weights generated by p-diff are close to
weights from the interpolation baselines, further suggesting
that p-diff may primarily interpolate between training check-
points. We note that this interpolation occurs within a very
narrow range, as detailed in Appendix E.

4. Discussion and Conclusion
We provide evidence that current generative modeling meth-
ods for weights primarily memorize the training data rather
than generating truly novel network weights. Our analy-
sis shows that generated checkpoints are close replications
or interpolations of training checkpoints, exhibiting similar
weight values and model behaviors. Notably, our analysis of
model behaviors shows that the generation methods offer no
clear advantage over simple baselines to create new models.

Our findings emphasize the need for careful evaluation of
memorization in generative modeling, particularly as these
models expand to new modalities and tasks. We hope this
work can inspire future research to address the memoriza-
tion issues, and further explore the practical applications of
generative models for weight data and beyond.
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[25] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 1998. 1

[26] Elizaveta Levina and Peter Bickel. Maximum likelihood
estimation of intrinsic dimension. In NeurIPS, 2004. 20

[27] Derek Lim, Haggai Maron, Marc T Law, Jonathan Lorraine,
and James Lucas. Graph metanetworks for processing diverse
neural architectures. In ICLR, 2024. 10, 11

[28] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 15

[29] David J.C. MacKay and Zoubin Ghahramani. Comments on
‘maximum likelihood estimation of intrinsic dimension’ by e.
levina and p. bickel (2004), 2005. 20

[30] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Baolin Wu, Andrew Y Ng, et al. Reading digits in natural
images with unsupervised feature learning. In NIPS workshop
on deep learning and unsupervised feature learning, 2011. 1

[31] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In ICML, 2021. 9

[32] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In Indian
conference on computer vision, graphics & image processing,
2008. 19

[33] Maya Okawa, Ekdeep S Lubana, Robert Dick, and Hidenori
Tanaka. Compositional abilities emerge multiplicatively: Ex-
ploring diffusion models on a synthetic task. In NeurIPS,
2024. 1

[34] Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion
models are minimax optimal distribution estimators. In ICML,
2023. 21



[35] William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A
Efros, and Jitendra Malik. Learning to learn with genera-
tive models of neural network checkpoints. arXiv preprint
arXiv:2209.12892, 2022. 1, 2, 10

[36] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz
Kaiser, and Geoffrey Hinton. Regularizing neural networks
by penalizing confident output distributions. arXiv preprint
arXiv:1701.06548, 2017. 9

[37] Ed Pizzi, Sreya Dutta Roy, Sugosh Nagavara Ravindra, Priya
Goyal, and Matthijs Douze. A self-supervised descriptor for
image copy detection. In CVPR, 2022. 19

[38] Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum,
and Tom Goldstein. The intrinsic dimension of images and
its impact on learning. In ICLR, 2021. 20

[39] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image genera-
tion with clip latents. arXiv preprint arXiv:2204.06125, 2022.
1

[40] Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kan-
gin, Remi Lam, Piotr Mirowski, Megan Fitzsimons, Maria
Athanassiadou, Sheleem Kashem, Sam Madge, et al. Skil-
ful precipitation nowcasting using deep generative models of
radar. Nature, 2021. 2

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In CVPR, 2022. 1

[42] Konstantin Schürholt, Dimche Kostadinov, and Damian Borth.
Self-supervised representation learning on neural network
weights for model characteristic prediction. In NeurIPS, 2021.
2, 20

[43] Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto,
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