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1. Introduction

Multi-view images that show an object from a small number
of different viewpoints, have emerged as a commonly used
auxiliary representation in 3D generation.

Despite promising results, it is challenging for current
multi-view generation methods to achieve pixel-level im-
age alignment across views. The coarse alignment achieved
with current methods introduces ambiguity in subsequently
employed reconstruction methods. as shown in Fig. 1, ir-
respective of whether per-instance optimization [1] or feed-
forward methods [2] are used for 3D generation, they get
blurred results due to pixel-level misalignment. Pixel-level
alignment issues arise because existing multi-view diffu-
sion models are mostly fine-tuned from an image diffusion
model with additional multi-view attention [3, 4] or an in-
termediate implicit 3D representation [5, 6]. Notably, the
diffusion process occurs in a latent space with limited reso-
lution, and decoding is performed independently for each
frame without cross-view communication, making pixel-
level alignment difficult. To improve, some multi-view dif-
fusion models are fine-tuned from video diffusion models
with camera trajectory control [7, 8]. Although the multi-
view latents are jointly decoded using a video decoder,
achieving pixel-level alignment remains challenging due to
the sparsity of adjacent multi-view frames.

In this work, we propose to address the pixel-level align-
ment issue by improving existing VAE decoders. Fol-
lowing prior multi-view generation works, We adopt the
VAE decoder from Stable Video Diffusion [9] as our back-
bone. Differently, to enable cross-view attention at higher-
resolution and and achieve better pixel-level multiview
alignment, we modify the VAE decoder in two ways: First,
we propose a depth-truncated epipolar attention mechanism
applied to high-resolution layers. This attention mechanism
extracts cross view features that are crucial for better feature
alignment. However, the depth information is not available
during inference. Moreover, the multi-view latents are often
not accurately aligned. Second, to solve this, we augment
data with structured-noise depth to mitigate the domain gap
between training and inference. We propose to augment
data with structured-noise depth, appending both high- and

low-frequency noise to the ground-truth depth. Then during
inference, we simply employ depth predicted by an off-the-
shelf multi-view 3D reconstruction method [1]. This is fea-
sible as we obtain a model that is more robust to imperfect
predictions.

We conduct extensive qualitative and quantitative exper-
iments against baseline methods. We visually compare with
other multi-view generation methods by adopting the same
3D reconstruction methods [1] and quantitatively measure
PSNR, SSIM, LPIPS, and the number of correspondences,
on the reconstructed 3D objects. The proposed method per-
forms favorably against existing state-of-the-art multi-view
generation methods.

2. Related work
3D generation. To utilize pre-trained image diffusion
models for 3D generation, Score Distillation Sampling
(SDS) [10] and its variants [11, 12] have been proposed
to distill knowledge from 2D models in a per-instance op-
timization manner, taking minutes to hours for each gen-
eration. Recently, to avoid time-consuming optimization,
feed-forward methods [13, 14] have emerged. They use
multi-view images as an auxiliary representation followed
by 3D reconstruction. In this work, we focus on pixel-
aligned multi-view image generation to facilitate better 3D
reconstruction, ultimately leading to better 3D generation.
Multi-view image generation. To adapt from large-scale
image [15] or video [7] diffusion models by finetuning,
multi-view diffusion models incorporate multi-view cross
attention [3, 16] or adopt intermediate 3D representations
like voxels [5] or a triplane-based neural radiance field
(NeRF) [6]. However, irrespective of the approach, existing
efforts still struggle to synthesize pixel-level aligned multi-
view images.

3. Method
3.1. Overview
We aim to generate multi-view images with better pixel-
level alignment (Fig. 2). For this, we focus on improving the
decoder of a latent diffusion model, Stable Video Diffusion
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Figure 1. Visualization of our method. Comparing to the baseline methods (column 4-7, 10-11), our proposed method enables to generate
pixel-aligned multi-view images, which can lead to better 3D reconstruction quality.
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Figure 2. Overview. (top) We focus on improving the decoder for pixel-aligned multi-view image generation. (bottom-left) The decoder
contains four Up-blocks to upsample the resolution from 32 to 256. (bottom-right) We propose several additions, highlighted with blue
color: a condition from the input front-view image and a depth-truncated epipolar attention mechanism.

(SVD) [9].
First we propose a depth-truncated epipolar attention

mechanism (Section 3.2, Fig.3). It aggregates features from
multi-view latents by making use of depth information. To
further mitigate the domain gap between the ground-truth
depth used in training and the predicted depth used in in-
ference, we propose a structured-noise depth augmentation
strategy (Section 3.3). The strategy can also help handle
the imperfect generated multi-view latents during inference.
Implementation details are in Section 3.4.

3.2. Depth-truncated epipolar attention

To generate pixel-level aligned multi-view images, the de-
coder needs to gather and process information from multi-
view latents. An epipolar attention mechanism is an excel-
lent candidate for this task, because it permits to combine
information from corresponding points across views. Im-

portantly, to attain a more accurate pixel-level information
exchange, the attention is preferably applied to any reso-
lution, particularly also on higher resolution latents. How-
ever, a vanilla epipolar attention mechanism often spreads
too much attention on irrelevant parts, which makes it diffi-
cult for the network to learn to extract the correct adjacent
features. Moreover, it also consumes a lot of memory and
easily leads to out-of-memory errors given current hardware
memory constraints, even on high-end equipment. To ad-
dress this, we propose a depth-truncated epipolar attention
mechanism. This approach not only aggregates multi-view
information at higher resolutions, but also further improves
the quality by enabling the model to focus on crucial re-
gions.

Concretely, consider a feature map from a referenced
view F ref , and feature maps from Nv other views
{F j}j ̸=ref . For a source point s on F ref , we can get the
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Figure 3. Epipolar Attention. (a) Full epipolar attention aggre-
gates information along the whole epipolar line, covering unneces-
sary ranges (only the red dot is the correct position), which limits
applicability to lower resolution representations due to memory
constraints. (b) Depth-truncated epipolar attention samples only
points near the 3D location of that pixel (the red dot). It en-
ables epipolar attention on higher-resolution representations and
improves information aggregation.

epipolar lines {lj}j ̸=ref on the other views. Instead of us-
ing all points on the epipolar lines, we only sample points
around the regions of interest. Specifically, given a known
or estimated depth value z and the camera intrinsics, we
can unproject the point to 3D space s3D. We the sample Np

points {pi} around s3D in range [−r, r] in a stratified way
along the 3D line formed by s3D and Tc2w · s, where Tc2w

is a camera-to-world transformation. We then project these
points to the epiplor lines {lj} on the other views to extract
features.

To compute the cross attention among views, we first ag-
gregate features across views. For the Np sampled points,
we get features {f j

i }i=1,...,Np, j=1,...,Nv
after projecting the

points onto the epipoloar line on the jth feature map. For
each point, we aggregate these features by a concatenation
operation followed by a 2-layer MLP,

fmv
i = MLP(concat({f j

i }j)),
MLP : RN×dim → Rdim, fmv

i ∈ Rd.
(1)

Then, we aggregate the features across Np points by stack-
ing along the feature dimension and get Fmv ∈ RNp×d.

We use this feature map to compute the keys and values
of classic attention while the queries are computed from the

reference view, i.e.,

Q = WQ · F ref ,WQ ∈ Rd×HW

K = WK · Fmv,WK ∈ Rd×Np

V = WV · Fmv,WV ∈ Rd×Np

(2)

We apply the depth-truncated epipolar attention on all
latent resolutions (from 32 to 256) in all Up-blocks of the
decoder.

3.3. Structured-noise depth augmentation
The proposed depth-truncated epipolar attention mecha-
nism requires access to depth information. During training,
we leverage 3D data to obtain ground-truth depth. During
inference, we can predict depth using off-the-shelf depth
predictors. However, the predicted depth is usually im-
perfect. Furthermore, the multi-view latents are encoded
from ground-truth 3D assets during training, but are gen-
erated by the diffusion process during inference. That is,
the multi-view latents we are decoding might not be accu-
rately aligned. Therefore, we need a strategy to mitigate the
domain gap.

Rather than warping the ground truth latents to simulate
the misalignment of generated latents, we warp the ground
truth depth, which can be regarded as equivalently warp-
ing the latents. For this, we propose structured-noise depth
augmentation as the noising process. During training, we
uniformly sample noise in lower resolution (3, 64, 128) hi-
erarchically. We then upsample these noises to the 256 res-
olution, and add them to the 256 resolution ground-truth
depth map D. We formulate the process as follows:

Zi ∼ U(−si, si)
i×i, i ∈ {3, 64, 128}

{Z ′
i} = Upsample({Zi}, 256), Z ′

i ∈ R256×256

D′ = D + Z ′
3 + Z ′

64 + Z ′
128

(3)

The noisy depths D′ now contain both high and low fre-
quency noise. Note that the depth map will be pooled to
different resolution for different hierarchies of Up-blocks.
Note, compared to the naive strategy which perturbs each
depth pixel with independent Gaussian or uniform noise,
our strategy does not cause the noise to be cancelled out in
lower resolutions. This makes our method more robust.

During inference, we simply use the predicted depth (we
use Neus [1] in this work), as we find our model to be robust
to inaccurate predictions.

3.4. Implementation details
We train our model on a subset of the Objaverse [17]
dataset, which includes around 23k objects with high-
quality geometry and texture. To render the dataset, our
procedure is similar to wonder3D [3]: we render RGB im-
ages from six fixed views—front, front right, right, back,



Method PSNR ↑ SSIM ↑ LPIPS ↓

Realfusion 15.26 0.722 0.283
Zero123 18.93 0.779 0.166
SyncDreamer 20.06 0.798 0.146
Wonder3D 20.55 0.845 0.166
Ours 20.74 0.847 0.164

Table 1. Image-conditioned novel view synthesis on Google
Scanned Objects. We report PSNR, SSIM, and LPIPS on the
generated novel view images of GSO objects.

left, and front left. Then the images are encoded by the
VAE encoder of Stable Diffusion [15]. During inference,
the image latents as the decoder’s input are generated by
wonder3D [3] given the input image. See appendix for more
implementation details.

4. Experiments
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Figure 4. Qualitative comparisons with baselines. See appendix
for more visualizations.

Methods Ours Zero123 Wonder3D w/o depth aug. Indep. aug. Full epi. w/o epi.

No. of corr. 458.87 54.28 329.56 291.59 259.03 254.20 245.94

Table 2. Evaluating pixel-level alignment. To better understand
the necessity of pixel-aligned multi-view images, we measure the
number of correspondences using AspanFormer.

4.1. Multi-view consistency
Following prior works, we evaluate baselines and our
method on a subset of the Google Scanned Object (GSO)
dataset [18], which includes a variety of objects in common
life. The subset matches what is used in SyncDreamer [5]
and wonder3D [3], including 30 objects from humans and
animals to everyday objects. For each object, we render
its front view in a 256 resolution and use it as the in-
put to all methods. Moreover, we use the photometric

Ours + NeuS Wonder3D + NeuSInput view

Figure 5. Qualitative comparisons after 3D rendering. To bet-
ter understand the impact of pixel-level aligned multi-view images
in the 3D generation pipeline, we reconstruct the 3D object using
generated multi-view images. We can clearly observe that incon-
sistent multi-view images lead to reconstructed 3D objects which
are blurry.

PSNR, SSIM [19], and LPIPS [20] as evaluation metrics.
The quantitative results are summarized in Tab. 1. Note
that Wonder3D’s performance in our evaluation is lower
than reported in the original paper. We tried our best to
re-implement their evaluation. Results still improve upon
those of other methods. Our method performs favorably to
Wonder3D in PSNR and SSIM.

Qualitatively, the multi-view images generated by our
method are more consistent, as shown in Fig. 4. We provide
zoomed-in illustrations to highlight complex textures. No-
tably, our method generates textures that are more faithful
to the input view, while Wonder3D and SyncDreamer both
yield blurred textures. This is due to their diffusion process
occurring in latent space with limited resolution. Moreover,
their decoder doesn’t consider other views.

Next, we measure the number of correspondences be-
tween adjacent views using the off-the-shelf dense match-
ing method AspanFormer [21]. As shown in Tab. 2, the pro-
posed method outperforms Wonder3D by 40%. This result
highlights the improved pixel-alignment.

4.2. Rerendering from 3D generation
Next, we show that consistent multi-view generation is
beneficial for 3D asset generation. As shown in Fig. 5,
we optimize NeuS [1] again using the images decoded by
our method, and re-render the NeuS results from the fixed
views. The Wonder3D [3] baseline reconstruction follows
its procedure. We observe the baseline’s re-rendering to
be much more blurred due to pixel-level misalignment. In
contrast, our method’s re-rendering remains consistent and
maintains the fine details observed in the front view.
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