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Abstract

Anomaly detection in industrial manufacturing is chal-
lenged by the scarcity of defective samples and class im-
balance. To address this, we propose a generative de-
fect synthesis framework that leverages generative models
to create realistic and diverse anomalies for training vi-
sual recognition systems. Our method preserves structural
and textural consistency with normal samples while gener-
ating high-fidelity defects, enabling improved anomaly de-
tection in low-data regimes. We validate our approach on
the MVTec AD benchmark and demonstrate significant im-
provements in both image-level and pixel-level AUC scores.
Furthermore, we explore model compression through 8-bit
quantization, achieving up to 4× model size reduction with
minimal performance degradation. A detailed case study in
multiple category of objects and textures highlights the ef-
ficacy of synthetic defects and the optimal combination of
real and synthetic data. This work bridges generative im-
age modeling and industrial visual recognition, offering a
scalable and efficient solution for real-world anomaly de-
tection with reduced data annotation effort and enhanced
deployability on edge devices.

1. Introduction and Related Work
Automated visual inspection (AVI) plays a vital role in in-
dustrial quality control, where accurate detection of surface
anomalies is essential [5, 10]. While deep learning has en-
abled substantial progress in this area, its reliance on large-
scale annotated datasets remains a significant limitation. In
industrial domains, defective samples are rare, diverse, and
expensive to label, prompting interest in generative methods
to synthesize realistic anomalies.

Recent self-supervised and unsupervised methods [4, 12,
15] have shown promise in detecting anomalies without ex-
plicit supervision [3, 7, 14]. However, their generalization is
often constrained by the scarcity and homogeneity of avail-
able data. Synthetic data generation via generative adver-
sarial networks (GANs) [1], physics-based simulation [11],
and advanced augmentations [6], provides a way to enrich

training sets with diverse defect types. Still, the challenge
remains: how can synthetic defects best emulate real-world
conditions to boost detection performance?

The MVTec AD [3] benchmark provides a standard for
evaluating industrial anomaly detection, with real-world
variations across textures and objects. Feature-based mod-
els like PaDiM [7] and PatchCore [14] detect anomalies
by modeling normal patch-level distributions. Recent work
such as DRÆM [19] highlights the potential of synthetic
anomalies in improving generalization. Moreover, practical
deployment demands efficiency. Model compression tech-
niques such as quantization and pruning [9, 18] are essential
for resource-constrained settings like edge devices, ensur-
ing low-latency inference without significant performance
degradation.

In this paper, we propose a generative defect synthe-
sis framework that: 1) Synthesizes structurally consistent
and photorealistic anomalies to augment training data for
deep anomaly detection. 2) Investigates the trade-off be-
tween real and synthetic data and the effect of realism on
generalization. 3) Incorporates model quantization to en-
able lightweight deployment without compromising accu-
racy. Extensive experiments on the MVTec AD and syn-
thetic datasets show that our method improves detection
performance using fewer real defects, and scales effectively
across object and texture categories.

The rest of the paper is organized as follows: Section 2
analyzes the MVTec Synthetic dataset and highlights core
challenges. Section 3 details our proposed method and
compression strategies. Section 4 presents the experimental
setup and evaluation results. Finally, Section 5 concludes
with key findings and future directions.

2. Dataset Characteristics and Analysis
The MVTec AD dataset [3] is a standard benchmark for un-
supervised industrial anomaly detection, comprising 15 cat-
egories (10 objects and 5 textures) with 3,629 normal train-
ing images and 1,258 defective test samples across 48 defect
types. Images reflect real-world manufacturing defects such
as scratches, dents, and misalignments, and vary in resolu-
tion and structure across categories.



Table 1. Summary of MVTec AD Dataset and Synthetic Dataset
Categories with Updated Defective Samples

MVTec AD Dataset Synthetic MVTec AD Dataset
# Defect # Normal # Defective Imbalance # Normal # Defective Imbalance

Category Type Types Samples Samples Ratio Samples Samples Ratio
Carpet Texture 5 308 89 3.46 280+56 = 336 500 0.67
Grid Texture 5 285 57 5.00 264+53 = 317 500 0.63
Leather Texture 5 277 92 3.01 245+49 = 294 500 0.59
Tile Texture 5 263 84 3.13 230+46 = 276 500 0.55
Wood Texture 5 266 60 4.43 247+50 = 297 500 0.59
Bottle Object 3 229 63 3.64 209+42 = 251 300 0.84
Cable Object 8 282 92 3.07 224+45 = 269 800 0.34
Capsule Object 5 242 109 2.22 219+44 = 263 500 0.53
Hazelnut Object 4 431 70 6.16 391+79 = 470 400 1.18
Metal Nut Object 4 242 93 2.60 220+44 = 264 400 0.66
Pill Object 7 293 141 2.08 267+54 = 321 700 0.46
Screw Object 5 361 119 3.03 320+64 = 384 500 0.77
Toothbrush Object 1 72 30 2.40 60+12 = 72 100 0.72
Transistor Object 4 273 40 6.83 213+43 = 256 400 0.64
Zipper Object 7 272 119 2.29 240+48 = 288 600 0.48

2.1. Challenges in Real-World Anomaly Detection
The distribution of normal and defective samples across cat-
egories is presented in Table 1. The imbalance ratio (IR),
defined as:

IR =
Nnormal

Ndefective
(1)

varies significantly, with some categories exhibiting severe
class imbalance, impacting model generalization. Three
key limitations hinder generalization in practical deploy-
ment:
• Class Imbalance: Many categories, such as transistor

(IR = 6.83) and hazelnut (IR = 6.16), exhibit severe im-
balance, reducing the model’s exposure to defective pat-
terns and biasing learning toward normal features.

• Defect Diversity: Defect variety is inconsistent. For ex-
ample, toothbrush contains only a single defect type, lim-
iting generalization, whereas zipper includes up to seven,
providing richer anomaly patterns.

• Limited Realism: Controlled lighting, clean back-
grounds, and clearly visible defects simplify the MVTec
AD dataset, contrasting with real-world settings where
defects are subtle (e.g., micro-cracks), and lighting, oc-
clusion, and noise add complexity.

2.2. Motivation for Synthetic Data
To address these challenges, we propose a generative frame-
work that synthesizes diverse, high-fidelity anomalies with
controllable attributes (location, size, texture, contrast). Our
contributions include:
• Balancing class distributions by generating synthetic

anomalies for under-represented categories.
• Enhancing defect diversity using GANs guided by

structured masks and texture priors.
• Simulating defect subtlety via controlled perturbations

that mimic realistic wear or micro-damage.
This synthetic augmentation not only enriches training

data but also enables systematic study of how anomaly type,
severity, and realism influence detection. Our goal is to
bridge the domain gap between synthetic and real defects,
enhancing robustness of deep anomaly detectors in indus-
trial contexts.

Figure 1. Synthetic defect generation pipeline. Normal images
are combined with category-specific masks, producing synthetic
defect images via a GAN-based model.

3. Methodology
We propose a modular deep learning framework to gener-
ate high-fidelity synthetic defect datasets tailored for in-
dustrial anomaly detection. Our method leverages condi-
tional GANs guided by defect masks and incorporates con-
trollable parameters, enabling realistic and diverse anomaly
generation with fine-grained spatial precision.

Overview. As illustrated in Figure 1, our pipeline begins
with defect-free samples from the MVTec AD dataset. Each
image is paired with a synthetically generated defect mask,
forming triplets of (normal image, mask, synthetic defect).
A U-Net-based generator learns to localize and synthesize
defects guided by these masks, while a PatchGAN discrim-
inator enforces local texture realism.

Mask-Guided Defect Synthesis. The generator G re-
ceives a normal image x and defect mask m to produce a
defect-laden output G(x,m). The final synthesized image
is constructed as:

y = x⊙ (1−m) +G(x,m)⊙m, (2)

ensuring that only masked regions are modified. The U-Net
architecture with skip connections enables preservation of
fine spatial structures in unmasked areas.

Discriminator and Style Loss. A PatchGAN-based dis-
criminator D evaluates local image patches, encouraging
the synthesis of texture-consistent anomalies. To further en-
hance visual fidelity, we introduce a style loss:

Lstyle =
∑
l

λl∥Gl(Fl(y))−Gl(Fl(ŷ))∥2F , (3)

where Fl(·) denotes feature activations and Gl(·) the corre-



sponding Gram matrices [8]. This encourages the synthe-
sized image ŷ to match the style of real defect textures.

Category-Specific Mask Generation. Defect masks are
generated using category-aware Perlin noise [13] modulated
by geometry and boundary proximity:

m(x, y) =


1, if s(x, y) = 1 ∧ P (x, y) > τ1

1, if s(x, y) = 0 ∧ P (x, y) > τ2 ∧ d(x, y) < ϵ

0, otherwise
(4)

This generates morphologically plausible masks that re-
spect object boundaries and real-world defect variability.

Controllable Defect Attributes. Our system supports
parametric control over defect attributes, location, size, in-
tensity, and texture, allowing the generation of diverse sam-
ples tailored for specific inspection tasks. This facilitates
targeted training and robust evaluation of anomaly detec-
tion models [16].

Loss Functions. The generator is optimized with a com-
posite loss:

LG = λadvLadv + λpixelLpixel + λstyleLstyle, (5)

where Ladv promotes realism, Lpixel preserves structural
consistency, and Lstyle enforces perceptual similarity. The
discriminator is trained using a standard GAN loss.

Model Compression via Quantization. To reduce in-
ference cost, we apply post-training quantization by map-
ping 32-bit weights to b-bit integers [17].

4. Experiments and Results
4.1. Experimental Setup
All experiments were conducted on the Kaggle platform us-
ing NVIDIA Tesla P100 and G4 GPUs. The implementa-
tion was in PyTorch to facilitate reproducibility.

Architecture Details. Our adversarial framework con-
sists of a U-Net-based generator with skip connections and
a five-layer PatchGAN discriminator, both employing spec-
tral normalization and LeakyReLU activations. A VGG-
16-based perceptual loss module enhances style fidelity by
extracting features from layers relu1 2 to relu4 3.

Training Protocol. Models were trained using the
Adam optimizer (β1 = 0.5, β2 = 0.999) for 30 epochs with
a batch size of 4. The learning rate was set to 2× 10−4 and
linearly decayed post 20 epochs. A 3-epoch warm-up and
gradient clipping (threshold 1.0) were employed for stabil-
ity. Early stopping was triggered after three non-improving
validation epochs.

Loss Function. The total objective combines adversar-
ial, pixel-wise, and perceptual components:

Ltotal = λadvLGAN + λpixelLL1 + λstyleLV GG, (6)

where λadv = 1, λpixel = 100, and λstyle = 100 ensure a
balance between realism and content preservation.

Table 2. Benchmark comparison between Anomalib and our base-
line implementation on the MVTec AD and Synthetic MVTec AD
datasets. The difference between our implementation and Anoma-
lib is shown in parentheses.

Category
Image-Level AUC Pixel-Level AUC

Anomalib Our Impl. (Diff.) Our Impl. (Diff.) Anomalib Our Impl. (Diff.) Our Impl. (Diff.)
MVTec AD MVTec AD Synthetic MVTec AD MVTec AD Synthetic

bottle 0.9990 1.0000 (+0.0010) 1.0000 (+0.0010) 0.9850 0.9737 (-0.0113) 0.9661 (-0.0189)
cable 0.8780 0.9202 (+0.0422) 1.0000 (+0.1220) 0.9700 0.9529 (-0.0171) 0.9793 (+0.0093)
capsule 0.9270 0.9358 (+0.0088) 0.9957 (+0.0687) 0.9880 0.9791 (-0.0089) 0.9886 (+0.0006)
carpet 0.9950 0.9992 (+0.0042) 0.9997 (+0.0047) 0.9910 0.9844 (-0.0066) 0.9872 (-0.0038)
grid 0.9420 0.9582 (+0.0162) 0.9994 (+0.0574) 0.9700 0.9390 (-0.0310) 0.9832 (+0.0132)
hazelnut 0.9640 0.9586 (-0.0054) 1.0000 (+0.0360) 0.9850 0.9712 (-0.0138) 0.9753 (-0.0097)
leather 1.0000 1.0000 (+0.0000) 0.9993 (-0.0007) 0.9930 0.9858 (-0.0072) 0.9919 (-0.0011)
metal nut 0.9890 0.9936 (+0.0046) 1.0000 (+0.0110) 0.9820 0.9641 (-0.0179) 0.9551 (-0.0269)
pill 0.9390 0.9193 (-0.0197) 0.9986 (+0.0596) 0.9660 0.9510 (-0.0150) 0.9758 (+0.0098)
screw 0.8450 0.8203 (-0.0247) 0.9950 (+0.1500) 0.9880 0.9724 (-0.0156) 0.9955 (+0.0075)
tile 0.9740 0.9899 (+0.0159) 0.9987 (+0.0247) 0.9550 0.9027 (-0.0523) 0.9578 (+0.0028)
toothbrush 0.9470 1.0000 (+0.0530) 1.0000 (+0.0530) 0.9780 0.9806 (+0.0026) 0.9883 (+0.0103)
transistor 0.9750 0.9925 (+0.0175) 0.9989 (+0.0239) 0.9680 0.9513 (-0.0167) 0.9805 (+0.0125)
wood 0.9930 0.9939 (+0.0009) 1.0000 (+0.0070) 0.9570 0.9088 (-0.0482) 0.9658 (+0.0088)
zipper 0.9820 0.9422 (-0.0398) 0.9972 (+0.0152) 0.9800 0.9761 (-0.0039) 0.9872 (+0.0072)
avg 0.9500 0.9616 (+0.0116) 0.9988 (+0.0488) 0.9790 0.9596 (-0.0194) 0.9785 (-0.0005)

4.2. Results and Analysis
We evaluate the performance of our synthetic defect gener-
ation approach across the 15 categories of the MVTec AD
dataset, comparing our method to Anomalib [2] and our
baseline PaDiM [7] implementation.

4.2.1. Benchmark Results on MVTec AD Dataset
Table 2 presents a comparative analysis between Anomalib
and our method. Performance is assessed using Area Under
the Curve (AUC) at both the image and pixel levels.

Image-Level AUC. Our method shows an average gain
of +0.0116 over Anomalib, with the most significant im-
provement in the toothbrush category (+0.0530). This indi-
cates superior defect classification capability.

Pixel-Level AUC. Although our method remains com-
petitive, the pixel-level AUC shows a slight decrease
of -0.0194 on average, highlighting challenges in spatial
anomaly localization. Notably, tile and wood categories ex-
hibit larger declines, suggesting potential areas for improve-
ment in segmentation precision. The disparity between
image-level and pixel-level performance suggests that while
our method excels in anomaly detection, further work is
needed to improve spatial localization. Future research will
explore enhanced feature extraction and thresholding strate-
gies to address this.

4.2.2. Results on Synthetic MVTec AD Dataset
Table 2 compares our approach with Anomalib on the syn-
thetic MVTec AD dataset. Our method shows a notable
improvement in image-level AUC (+0.0488 on average),
with significant gains in categories like cable (+0.1220) and
screw (+0.1500), highlighting the efficacy of our synthetic
defect generation in boosting classification performance.

Pixel-Level AUC. At the pixel level, performance re-
mains comparable to Anomalib, with a negligible average
difference of -0.0005. This indicates that our synthetic ap-
proach retains robust spatial localization, especially in cat-
egories such as cable and screw, though further refinement
is needed for categories like metal nut and bottle. These re-



Table 3. Performance comparison on MVTec Synthetic Data of different quantization methods across multiple categories using evaluation
metrics Image-level AUC (I-AUC), Image-level AUC (P-AUC), Compression Ratio (CR), and Huffman encoding-based CR (HCR).

Metric I-AUC P-AUC CR HCR I-AUC P-AUC CR HCR I-AUC P-AUC CR HCR I-AUC P-AUC CR HCR I-AUC P-AUC CR HCR
Category Bottle Cable Capsule Carpet Grid
1-bit Q 0.6583 0.6035 32.0 32.0 0.6841 0.8111 32.0 32.0 0.6425 0.7119 32.0 32.0 0.4607 0.6291 32.0 32.0 0.6507 0.7275 32.0 32.0
2-bit Q 0.6470 0.7081 16.0 29.1 0.6604 0.8302 16.0 29.1 0.6276 0.7708 16.0 29.1 0.3780 0.5799 16.0 29.1 0.7852 0.7653 16.0 29.1
4-bit Q 0.4877 0.4563 8.0 25.1 0.5986 0.5856 8.0 25.1 0.8863 0.1628 8.0 25.1 0.7790 0.8026 8.0 25.1 0.4738 0.3054 8.0 25.1
8-bit Q 1.0000 0.9660 4.0 7.3 1.0000 0.9793 4.0 7.3 0.9944 0.9885 4.0 7.3 0.9996 0.9871 4.0 7.3 0.9994 0.9830 4.0 7.3
Baseline 1.0000 0.9662 1.0 1.0 1.0000 0.9793 1.0 1.0 0.9942 0.9886 1.0 1.0 0.9996 0.9872 1.0 1.0 0.9994 0.9832 1.0 1.0
Category Hazelnut Leather Metal Nut Pill Screw
1-bit Q 0.6221 0.4522 32.0 32.0 0.7329 0.7285 32.0 32.0 0.9125 0.2993 32.0 32.0 0.6798 0.2310 32.0 32.0 0.4502 0.6113 32.0 32.0
2-bit Q 0.6443 0.2889 16.0 29.1 0.7147 0.6975 16.0 29.1 0.8653 0.2744 16.0 29.1 0.6788 0.2240 16.0 29.1 0.4630 0.6107 16.0 29.1
4-bit Q 0.6565 0.4511 8.0 25.1 0.8552 0.9541 8.0 25.1 0.9444 0.4470 8.0 25.1 0.6131 0.4020 8.0 25.1 0.6484 0.2623 8.0 25.1
8-bit Q 1.0000 0.9752 4.0 7.3 0.9996 0.9919 4.0 7.3 1.0000 0.9557 4.0 7.3 0.9982 0.9757 4.0 7.3 0.9947 0.9955 4.0 7.3
Baseline 1.0000 0.9753 1.0 1.0 0.9997 0.9919 1.0 1.0 1.0000 0.9552 1.0 1.0 0.9980 0.9758 1.0 1.0 0.9950 0.9955 1.0 1.0
Category Tile Toothbrush Transistor Wood Zipper
1-bit Q 0.4935 0.5186 32.0 32.0 0.6208 0.2019 32.0 32.0 0.5107 0.5673 32.0 32.0 0.5305 0.5324 32.0 32.0 0.4517 0.6509 32.0 32.0
2-bit Q 0.5332 0.4688 16.0 29.1 0.6217 0.1894 16.0 29.1 0.4994 0.7387 16.0 29.1 0.5394 0.5481 16.0 29.1 0.4787 0.7617 16.0 29.1
4-bit Q 0.8222 0.8100 8.0 25.1 0.6450 0.2065 8.0 25.1 0.4715 0.5913 8.0 25.1 0.7564 0.7933 8.0 25.1 0.5235 0.6462 8.0 25.1
8-bit Q 0.9987 0.9580 4.0 7.3 1.0000 0.9883 4.0 7.3 0.9988 0.9810 4.0 7.3 1.0000 0.9651 4.0 7.3 0.9968 0.9871 4.0 7.3
Baseline 0.9984 0.9579 1.0 1.0 1.0000 0.9883 1.0 1.0 0.9989 0.9804 1.0 1.0 1.0000 0.9657 1.0 1.0 0.9969 0.9872 1.0 1.0

sults affirm the potential of synthetic defect generation to
improve classification accuracy while maintaining spatial
anomaly localization. Future work will focus on refining
defect synthesis to enhance pixel-wise anomaly detection.

Visual Results. Figure 2 shows qualitative compar-
isons among normal images, real anomalies, and syntheti-
cally generated defects. Our synthetic anomalies accurately
replicate real-world structural and texture variations. For
instance, bottle defects capture subtle texture discontinu-
ities, while screw defects exhibit realistic localized surface
anomalies.

4.3. Implications for Synthetic Data Generation
Our findings underscore the effectiveness of synthetic data
in anomaly detection. As shown in Table 2, well-designed
synthetic defects improve anomaly detection, with an aver-
age image-level AUC increase of +0.0488 over Anomalib.
Categories with complex geometry and texture, such as ca-
ble and screw, benefit most, while simpler textures see more
modest improvements. This highlights the importance of
tailoring synthetic data generation to object complexity. In
Table 2, we observe that categories with higher imbalance
ratios benefit most from synthetic data augmentation. This
aligns with real-world challenges where defect samples are
scarce, reinforcing the value of synthetic data for addressing
such imbalances.

4.4. Impact of Model Compression
Model quantization substantially reduces model size while
striving to preserve performance. As shown in Table 3,
8-bit quantization maintains near-baseline accuracy across
all categories, with minimal degradation in I-AUC and P-
AUC. For instance, in the bottle category, 8-bit quantization
achieves an I-AUC of 1.0000 and P-AUC of 0.9660, nearly
identical to the baseline (I-AUC: 1.0000, P-AUC: 0.9662),
while achieving a 4× compression. However, aggressive
quantization (e.g., 1-bit and 2-bit) results in notable accu-
racy degradation. In the capsule category, 1-bit quantization

Normal Defective Defective Defective
Image Image Image 1 Image 2

(MVTec AD) (MVTec AD) (Synthetic) (Synthetic)
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Figure 2. Visualization of normal and defective images from
MVTec AD and synthetic dataset

yields an I-AUC of 0.6425 and P-AUC of 0.7119, illustrat-
ing the trade-off between model size and accuracy. The per-
formance drop is more pronounced in complex categories
like screw and zipper, where spatial and textural feature fi-
delity is critical.

5. Conclusion

We presented a synthetic data generation framework for
industrial anomaly detection, combining a U-Net genera-
tor, PatchGAN discriminator, VGG-based style loss, and
category-specific mask generation. Evaluated on 15 MVTec
AD categories, our approach improved Image-Level AUC
by +0.0488 on average, with notable gains in complex
classes like cable and screw. Key insights include: (1)
synthetic data is most impactful in data-scarce regimes, (2)
domain-specific fidelity outweighs photorealism, and (3)
customized generation strategies are essential across cate-
gories. We further demonstrated that 8-bit quantization re-
duces model size by 3-4× with minimal accuracy loss, sup-
porting efficient edge deployment. Future work will extend
to high-resolution, 3D-aware synthesis, physical modeling,
and adaptation to unseen categories, with applications in
fields like medical imaging and remote sensing.
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