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Abstract

In this paper, we uncover a dichotomy in how concept
erasure methods modify diffusion models: guidance-based
avoidance versus destruction-based removal. Through sys-
tematic analysis of various erasure techniques and their
interactions with adversarial attacks, we demonstrate that
these two distinct mechanisms lead to fundamentally dif-
ferent behaviors and robustness properties. To illuminate
this distinction, we introduce NOISING ATTACK, a training-
free attack that adds controlled noise during the diffusion
process.

To better understand the differences between the types of
erasure methods, we track how concepts evolve throughout
the erasure process. We find that guidance-based meth-
ods work by disrupting the model’s ability to follow text
conditioning toward erased concepts, resulting in diverse
alternative generations. In contrast, destruction-based ap-
proaches actively reduce the likelihood of generating the
erased concept, causing consistent redirection to specific
alternative concepts we term “memory sinks.” Our findings
suggest that the choice between guidance-based avoidance
and destruction-based removal presents a fundamental trade-
off between generation diversity and adversarial robustness
in concept erasure.

1. Introduction
What happens to a concept when you erase it from a diffu-
sion model? Through extensive analysis of concept erasure
methods and their interactions with adversarial attacks, we
uncover a fundamental dichotomy: Some methods achieve
erasure by reducing guidance toward the target concept,

whereas others do so by destructing the model’s capacity to
generate it.

Understanding these underlying mechanisms is crucial
for multiple reasons. First, it helps identify why certain era-
sure methods are more robust to adversarial attacks while
others remain vulnerable. Second, it reveals whether erased
concepts are truly eliminated or merely suppressed in spe-
cific contexts. Most importantly, understanding these mech-
anisms can guide the development of more effective erasure
techniques that balance robustness with preservation of de-
sired model capabilities.

While the proposed methods for concept erasure highly
vary in loss and training dynamics, their study has so far been
less focused on understanding how they prevent a model
from generating the erased concepts. To address this gap,
we develop a comprehensive evaluation framework that sys-
tematically explores the underlying mechanisms of different
erasure approaches. Our framework employs established
adversarial attacks [14, 17, 27] not merely as evaluation
metrics but as analytical tools to understand how different
erasure methods operate.

In mammalian brains, neuroscience research has revealed
fascinating mechanisms of memory modification. Zhang
et al. [26] identified distinct neural circuits in rats that pro-
cess fear and reward memories, demonstrating that these
circuits can systematically redirect and modulate memory as-
sociations. Their findings showed that fear-associated memo-
ries were particularly susceptible to suppression, suggesting
an inherent biological mechanism for memory erasure. We
hypothesize that, similar to neural circuits, diffusion models
redirect conceptual information to specific semantic loca-
tions depending on the erasure method being applied.

To better explore the inner workings of concept erasure,
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Figure 1. Concept erasure methods can be broadly categorized into two types: (1) Guidance Based Avoidance, which erases a concept by
redirecting the model to a different concept locations when prompted for it. (2) Destruction Based Removal, which reduces the likelihood of
the concept that is being erased, thereby forcing the model to a nearby concept as a memory sink.

we move beyond traditional input-modification attacks by
proposing NOISING ATTACK, a simple training-free infer-
ence attack based on noising during the diffusion process.
This approach reveals that supposedly erased concepts can
still emerge during generation, even without explicit opti-
mization. Furthermore, our analysis of model behavior when
prompted with erased concepts leads to a crucial distinc-
tion between erasure mechanisms: guidance-based avoid-
ance, which prevents generation through conditional guid-
ance manipulation, and destruction-based removal, which
fundamentally suppresses the concept’s generation likeli-
hood (see Fig.1). We validate this model by demonstrat-
ing that destruction-based methods consistently redirect to
high-likelihood alternative concepts, or “memory sinks,” that
existed in the original model.

We make the following contributions: (i) A categoriza-
tion system to separate erasure methods into two distinct
regimes: guidance-based avoidance and destruction-based
removal. (ii) NOISING ATTACK, a training-free inference
time noising attack to circumvent concept erasure using a
simple modification to the diffusion process. (iii) An evalua-
tion framework to shed light on the mechanisms of various
concept erasure methods.

2. A Framework for Concept Erasure
While existing work primarily focuses on preventing specific
concept generation, understanding the underlying mecha-
nisms of concept erasure remains a crucial challenge (see
Appendix A for a discussion of existing works). To ad-
dress this, we present an evaluation framework that uses
adversarial attacks not merely as robustness metrics, but as
analytical tools to illuminate how different erasure methods
fundamentally operate. This framework allows us to study
how erasure methods transform model behavior and identify
their distinctive characteristics.

Our framework combines established adversarial tech-
niques with a novel inference-time attack we introduce. Pre-
vious attacks have demonstrated that concept erasure can
be circumvented through both adversarial inputs and model

fine-tuning [14, 17, 20, 23, 27], suggesting erasure meth-
ods may also be vulnerable to alterations in the generation
process itself. As existing attacks primarily rely on optimiz-
ing input prompts or noise patterns, their dependence on
carefully crafted examples may limit their ability to expose
broader vulnerabilities. Therefore, we propose a new attack
that operates during inference by modifying the diffusion
process directly.

2.1. Training-Free Inference Time Noising Attack

𝚡T 𝚡T−1 𝚡T−2 𝚡1 𝚡0

Original Trajectory

Noising Attack Trajectory Random Gaussian Noise 

Diffusion Denoising Step

𝚡̃0

𝚡̃1𝚡̃T−2

𝚡̃T−1

Figure 2. NOISING ATTACK adds Brownian motion to the diffusion
trajectory. At every diffusion denoising timestep, we add back a
controlled amount of noise to allow the model to search in a larger
latent space.

Our proposed method uses a simple yet effective training-
free noising attack that operates during inference by adding
controlled noise after each denoising step:

x̃t−1 = (x̃t − αϵD) + ηϵ (1)

where αϵD represents the standard denoising process, and
ηϵ represents additional Gaussian noise scaled by parameter
η. We explore values of η in the range [0.2, 5.0] to balance
model predictions and noise injection.

As shown in Fig. 2, at every denoising step in diffusion
process we add a scaled amount of noise to the latent. This
approach performs a controlled exploration of the model’s
latent space through Brownian motion along the diffusion
trajectory. In theory, if an erasure model simply deviates the
trajectory of a concept, our attack helps expand the diffu-
sion trajectory bandwidth and allows the latents to find the



Erased Concept Unerased Concepts Concept Inversion Noising Attack UnlearnDiffAtk
(↓) (↑) Attack (↓) Attack (↓) (↓)

GA 24.27 ± 2.74 28.82 ± 2.82 22.73 ± 2.48 26.11 ± 2.15 26.63 ± 1.95
UCE 22.40 ± 5.16 31.15 ± 2.30 30.65 ± 2.03 27.79 ± 3.57 28.22 ± 3.21
ESD-x 21.12 ± 4.10 30.66 ± 2.48 30.56 ± 2.37 28.02 ± 2.73 28.81 ± 2.17
ESD-u 20.87 ± 3.42 29.41 ± 3.26 27.99 ± 3.35 27.74 ± 2.47 25.48 ± 2.77
Task Vector 23.07 ± 2.97 30.72 ± 2.41 25.69 ± 2.58 26.51 ± 2.17 27.39 ± 1.67

Table 1. ESD-u and UCE are effective at erasing concepts and better preserve the unerased concepts. However, Gradient Ascent and Task
Vector show stronger robustness against the adversarial attacks but show weaker erasing effects. Bold numbers indicate the best results,
while underlined numbers represent the second-best.

“better” unerased distribution (see right Fig. 2). To evalu-
ate attack effectiveness, we execute it five times and select
the generated image with the highest CLIP score relative to
the target concept. This represents a basic search strategy
for identifying successful attack instances. We ground this
attack method to the DDIM formulation in Appendix E.

2.2. Framework setting
Concept erasure methods are generally evaluated on their
ability to supress the erased concept and preserve the gener-
ation quality of unrelated control concepts. However, these
evaluations are not sufficient to validate the erasure methods
in unexpected settings. We therefore propose a framework
to better understand these methods.

Erasure methods. We use the following concept erasure
methods for our evaluations: Baseline [16] - Unedited Stable
Diffusion 1.4 model (no erasure); UCE [7] - A closed-form
solution editing of the cross-attention weight in the model
to replace the target concept and preserve other concepts;
ESD-u [5] - fine-tunes the pre-trained diffusion U-Net model
weights to remove a specific style or concept when condi-
tioned on a specific prompt; ESD-x [5] - fine-tunes only
the cross-attention layers, modifying how textual condition-
ing influences latent feature modulation; Task Vector [15] -
Finetuning the U-net to increase the likelihood of the target
concept, and then editing the model in the opposite direction
using the Task Vector technique [11]; GA - direct gradient
ascent to reduce the likelihood of the target concept. Please
see Sec.F for implementation details.

Evaluation Strategies. We use the following methods
to evaluate different erasure strategies: Standard prompt -
Giving the model a simple prompt containing the concept
name; Noising attack - our suggested attack based on adding
noise to the diffusion generation process (see Sec.2.1); Un-
earnDiffAtk [27] - adversarial prompt generation methody
exploiting their intrinsic classification abilities of the model
to bypass unlearning mechanisms; Concept Inversion [14]
- Finding new inputs to the text encoder to induce genera-
tion of the target concept (using white box access textual
inversion [4]). Please see Sec.F for implementation details.

Concepts and metrics. Concepts - we conduct our ex-

periments on 10 object concepts and 3 art styles. We report
average results in the main text, and show detailed analy-
sis in App.C. Metrics - we evaluate similarity using CLIP
score [10]. For the Control Accuracy, measuring how the
erasure affect other concepts, we use the full collection of
concepts (but the target one) and report the CLIP similarity
(see Fig.4).

2.3. Results
We present our comprehensive evaluation results in Tab.1.
Our analysis reveals several key insights about concept era-
sure mechanisms. First, we validate that all methods success-
fully erase target concepts, with ESD and UCE demonstrat-
ing superior performance in both erasure effectiveness and
preservation of unrelated concepts. However, our adversarial
evaluation unveils interesting patterns in method robustness:
Gradient Ascent and Task Vector show stronger resistance
to concept inversion and NOISING ATTACK while ESD-u ex-
hibits resilience against input space adversarial attacks like
UnlearnDiffAtk. The concept inversion attack proves most
effective overall, likely due to its white-box access, image
supervision, and soft prompt optimization capabilities.

This distinct pattern of vulnerabilities leads us to propose
a fundamental dichotomy in erasure approaches: guidance-
based avoidance methods versus destructive removal meth-
ods. Guidance-based approaches, which primarily have
strong erasure effects, appear to work by redirecting the
model’s attention rather than eliminating the concept entirely.
In contrast, destructive methods show greater resistance to
parameter and latent space attacks, suggesting that they fun-
damentally alter the model’s knowledge of the concept.

3. Guidance-Based and Destruction-Based
We uncover a dichotomy of concept erasure methods in
diffusion models:

Guidance-based avoidance methods erase the concept by
avoiding the target concept and guiding the model to other
alternative, unrelated distributions.

Destruction-based removal methods suppress the model’s
associated likelihood with the concept being erased.
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Figure 3. Erasing “Golf Ball” concept using different methods, we
show that our training-free inference time noising attack effectively
circumvents most of the erasure methods
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Figure 4. We show the undesirable effects of the erasure methods
when erased “Van Gogh” concept on unerased concepts like “Air-
liner” and “Picasso”. We find that Gradient Ascent has the most
interference with undesired concept.

3.1. Where Do Erased Concepts Go?

To better understand the behavior of different erasure meth-
ods and which model better describes them, we analyze how
model outputs evolve when the erased concept is used as
a prompt. We examine this trajectory by analyzing CLIP
image embeddings of the generated images. As we explain
below, the nature of the erasure—whether avoidance-based
or destruction-based—strongly influences what the model
generates in place of the erased concept.

When destruction-based methods are used, the edited
model may still be weakly guided toward the erased concept,
but fails to generate it, as it no longer lies in a high-likelihood
region of the image manifold. Consequently, these meth-
ods consistently push the diffusion model to select a nearby
high-likelihood alternative (see right of Fig. 1). Therefore,
Gradient Ascent and Task Vector tend to converge on a con-
sistent alternative concept to replace the erased one. These
methods also exhibit greater robustness in Table 1.

In contrast, guidance-based avoidance methods work by

interfering with the guidance mechanism itself, thereby pre-
venting the model from guiding the generation toward the
erased concept. As a result, such models tend to produce
a more diverse set of alternative concepts. We suggest that
ESD-u and ESD-x fall into this category: they display lower
robustness (see Table 1) and produce more varied outputs
when prompted with the erased concept.

In our evaluation, we prompt each erased model with the
concept intended for erasure and generate 25 images per
concept. For each model, we then plot: (i) the distance be-
tween the average CLIP embedding of the generated images
and that of the original (unedited) model (Fig.7); and (ii)
the internal spread of CLIP embeddings across generations
(Fig.8). To better illustrate these effects, we also include
qualitative results in Fig. 5. We find these results consistent
with our categories.

3.2. Analysis
We further analyse the differences between guidance-based
avoidance and destruction-based removal methods.

Inpainting of erased concept as a probe. The main mo-
tivation of utilizing inpainting as an evaluation method is to
thoroughly check the model’s knowledge by presenting some
“contextual” information about the erased concept. As seen
in Fig.6 and Tab.2, the destruction-based removal methods
exhibit significantly poorer performance in the inpainting
task compared to guidance-based avoidance methods. This
provides supporting evidence that destruction-based erasure
effectively removes the model’s knowledge related to the
erased concept. On the other hand, while the inpainting
capabilities of guidance-based avoidance methods are not
perfect, they remain closer to those of the unedited model.

Does the memory sink already exist in the original
model? Yes, we find that the memory sink concepts are not
novel concepts generated during the unlearning process but
rather already exist in the original model’s knowledge. To
analyze this, we generate memory sink concepts from the
erased model and use them for finding memory sink concepts
in the original model through textual inversion [4]. Once we
find an embedding in the original model, we generate 100 im-
ages and measure the CLIP image embedding distance with
the training data. We term this measure Inversion Consis-
tency as it measures the consistency of the text embedding’s
ability to generate the memory sink concept in the original
and edited model. Our results in Table 5 indicate that the
memory sink was indeed present in the original model prior
to the erasure as it is consistently produced by the original
model, and exhibits comparable behavior in both models.
(see Sec.F for implementation details).
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A. Related Works

Concept erasure methods for text-to-image models. Recently, various techniques have been introduced to prevent generative
models from producing images of unwanted concepts. Some work [1, 12, 18, 24] propose modifying the inference process
to steer outputs away from unwanted concepts. Other methods utilize classifiers to adjust the generated results. However,
since inference-guided approaches can be circumvented with sufficient access to model parameters [19], subsequent research
has focused on directly updating the model weights. Pham et al. [15] apply task vectors to shift the model towards a weight
space that forgets the unwanted concepts. Heng and Soh [9] utilize continual learning techniques to erase targeted concepts.
Gandikota et al. [5] fine-tune the model to minimize the likelihood of generating the desirable concepts. Gandikota et al.
[7] propose a closed-form expression of the weights of an erased model. Gong et al. [8] used a closed-form solution to find
target embeddings of a concept which are used to update the cross-attention layers accordingly. Zhang et al. [25] suggest
cross-attention re-steering to update the cross-attention maps in the UNet model of Stable Diffusion to erase concepts.

Attacks against concept erasure methods. While concept erasure methods effectively prevent undesirable generations
when the concept is explicitly mentioned in the prompt (e.g., a painting in the style of Picasso), recent studies have demonstrated
that adversarial inputs can bypass most of these defenses. In a white-box setting, Pham et al. [14] leveraged textual inversion
to learn word embeddings capable of reintroducing so-called erased concepts. Similarly, Rusanovsky et al. [17] applied the
same technique to learn latent seeds that reconstruct the removed concepts. Other research [2, 23, 27] has focused on directly
crafting hard prompts that evade concept erasure mechanisms. Specifically, Zhang et al. [27] employed the diffusion model’s
zero-shot classifier to identify adversarial prompts, while Tsai et al. [23] used an evolutionary algorithm to discover them.
Additionally, Chin et al. [2] optimized prompts by minimizing the distance between the diffusion trajectory and an unsafe
trajectory, effectively circumventing the intended erasure.

Internal representations in diffusion models. Recent work has revealed that diffusion models encode semantic information
in structured and interpretable ways. For instance, [6] demonstrated that semantic directions within the model can be effectively
captured using low-rank adaptors, enabling precise continuous control. Building on this understanding, [3] showed that
semantic representations are localized within specific subspaces of the model’s cross-attention weights. Further investigations
into the architectural components of diffusion models have yielded important insights. [13] discovered that specific concepts
can be modified by targeting sparse sets of neurons for ablation. Through the application of Sparse Autoencoders (SAEs),
[21] identified specialized blocks within the UNet architecture that handle distinct aspects of image generation, including
composition, color manipulation, and local detail enhancement. [22] leveraged the UNet as an analytical tool to probe text
encoder representations by studying how different internal representations influence the final generated outputs. While these
works have advanced our understanding of diffusion models’ internal representations, they primarily focus on static analysis of
trained models. Our work focuses on the temporal dynamics of concept erasure during the unlearning process. Through our
holistic evaluation framework, we analyze how different erasure methods distinctly affect concept representations throughout
the model. We trace the evolution of concept representations during unlearning fine-tuning, revealing the dynamic nature of
concept modification and providing insights into the effectiveness of various erasure techniques.

B. Limitations

Using the prompt while applying erasure. Destruction-based methods like Gradient Ascent and Task Vectors rely solely on
visual examples, fine-tuning the model to avoid them without direct conditioning on a specific prompt. Prompt independence
has been proposed as a potential explanation for the increased robustness of certain methods [15]. It may therefore offer a
complementary perspective to the explanation suggested here: prompt-dependent methods tend to achieve guidance-based
avoidance, while prompt-independent methods tend to achieve destruction-based removal. However, this raises an open
question: can methods that rely on prompts be used to achieve destruction-based removal, and if so, is there any benefit to
doing so?

Causality and control in concept erasure. In many cases, even the expectations for an ideal concept erasure algorithm
remain unclear. For example, when attempting to erase an art style like Van Gogh’s, should we also remove related styles,
such as Edvard Munch’s? This is particularly tricky when causality is involved (e.g., should erasing ‘Van Gogh’ cause the
erasing of ‘Edvard Munch’ but not vice versa?). In any case, achieving this level of control is still beyond the capabilities of
current methods. Nevertheless, our findings offer some guidance: destruction-based removal tends to impact related concepts
more significantly than guidance-based avoidance.

Evaluting other concepts. Our study covers 13 concepts, 10 objects and 3 art styles. However, other concepts may include
verbs, relationships, or abstract ideas (e.g., ‘violence’). Studying such concepts is beyond the scope of this work.

CLIP Scores. Our main evaluation of adversarial robustness is highly reliant on CLIP scores (Tab.1). However, the extent
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Figure 5. When comparing the concept trajectory as concepts are progressively erased more, the difference between guidance-based
(ESD-u/ESD-x) and destruction-based (Gradient Ascent/Task Vector) erasure becomes visually apparent. Destruction-based methods
degrade the concept itself, shifting it to a nearby concept. Guidance-based methods, on the other hand, push the concept towards the
distribution of unconditional generations, creating images more diverse images.

to which something is erased may not be fully quantified by CLIP scores and can sometimes be subjective. Therefore, a more
systematic evaluation of concept erasure may need to rely on more rigorous metrics that have yet to be developed.

C. Additional Results

SD 1.4 GA UCE ESD-x ESD-u Task Vector

CLIP Score 30.20 ± 2.23 23.92 ± 2.43 26.90 ± 3.26 26.76 ± 3.05 25.91 ± 3.12 24.81 ± 2.85

Table 2. Gradient Ascent and Task Vectors show the least knowledge of erased concept even under contextual inpainting task probe. We
show CLIP scores averaged across 13 different concepts.

D. Limitations

An extensive discussion of the limitations of our work can be found in Appendix B.

Concept Inv. Noising Du. UnlearDiffAtk Standard Pro. Control Acc. Obj Control Acc. Art

GA 23.48 ± 2.15 29.10 ± 2.93 28.74 ± 2.27 22.04 ± 2.17 25.58 ± 1.99 26.40 ± 1.82
UCE 20.19 ± 3.53 31.06 ± 2.23 31.10 ± 2.51 30.49 ± 2.18 26.40 ± 2.81 26.90 ± 2.32
ESD-X 19.78 ± 3.59 30.60 ± 2.45 30.98 ± 2.37 30.67 ± 2.56 27.65 ± 2.96 28.75 ± 2.24
ESD-U 19.86 ± 3.05 28.99 ± 3.52 30.31 ± 2.28 27.33 ± 3.48 27.33 ± 2.61 24.97 ± 2.70
Task Vector 22.49 ± 3.03 30.94 ± 2.48 30.80 ± 2.10 25.40 ± 2.69 26.14 ± 2.19 27.39 ± 1.82

Table 3. Extension of Tab.1 with the two types of unerased concepts, when erasing objects (mean ± std).
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Figure 6. Inpainting serves as an initialization method, guiding the diffusion process closer to the target concept. As a result, guidance-based
avoidance remains more vulnerable to such attacks, whereas destruction-based removal tends to introduce unrelated or noisy artifacts into
the images.

Concept Inv. Noising Du. UnlearDiffAtk Standard Pro. Control Acc. Obj Control Acc. Art

GA 22.04 ± 2.17 25.58 ± 1.99 26.40 ± 1.82 23.48 ± 2.15 29.10 ± 2.93 28.74 ± 2.27
UCE 30.49 ± 2.18 26.40 ± 2.81 26.90 ± 2.32 20.19 ± 3.53 31.06 ± 2.23 31.10 ± 2.51
ESD-x 30.67 ± 2.56 27.65 ± 2.96 28.75 ± 2.24 19.78 ± 3.59 30.60 ± 2.45 30.98 ± 2.37
ESD-u 27.33 ± 3.48 27.33 ± 2.61 24.97 ± 2.70 19.86 ± 3.05 28.99 ± 3.52 30.31 ± 2.28
Task Vector 25.40 ± 2.69 26.14 ± 2.19 27.39 ± 1.82 22.49 ± 3.03 30.94 ± 2.48 30.80 ± 2.10

Table 4. Extension of Tab.1 with the two types of unerased concepts, when erasing art styles (mean ± std).

Concept Inversion Consistency: SD 1.4 Inversion Consistency: Edited Model

Van Gogh 4.79± 0.09 6.12± 0.17
Thomas Kinkade 4.35± 0.16 4.06± 0.12
English Springer 2.58± 0.12 6.81± 0.12
Garbage Truck 2.76± 0.12 3.87± 0.13

Table 5. This table shows the prevalence of memory sink concepts in a model before and after erasure (mean ±95% CI). We show that the
Inversion Consistency of memory sink concepts is comparable before and after editing the models. This supports our hypothesis that the
memory sink concept generated by the edited model was likely already present in the original model with high likelihood. Lower Inversion
Consistency scores indicate that the distances between different generations are smaller, meaning the generations are more consistent. This
suggests a higher likelihood associated with the memory sing concept.



Figure 7. We plot the centroids of the CLIP embeddings of diffusion model generations for particular concepts as they are being erased. For
each method, we show the strength of erasure on the X-axis and the centroid’s Euclidean distance from the original concept’s embedding
on the Y-axis. The shaded regions are 95% confidence intervals for the concept’s distance from its original location. In the plots, we see
a difference between the more linear concept trajectory of destruction-based methods (GA, TV) and the sublinear concept trajectory of
guidance-based methods (ESD-x, ESD-u). Destruction-based erasure pushes the generation away while guidance-based erasure maps it to
unconditional generation without changing it much for a more for stronger edits.

Figure 8. We plot the average distance of embeddings from their centroid at a particular step. For each method, we show the strength
of erasure on the X-axis and the average of the embeddings’ distances from their centroid on the Y-axis. This figure compares how the
broadness in the space of possible generations for a given concept change as the target concept is erased. We show that, for GA, the space of
possible generations remains tight even as the concept itself is destroyed, meaning that the generations are drawn from a new high-likelihood
area, a memory sink. For ESD-x and ESD-u, the generations broaden as the concept is pushed towards the null distribution. TVs still
demonstrate concept broadening but remain tighter than the guidance-based avoidance methods.

E. Training Free Inference Time Noising Attack

Song et al. introduced Denoising Diffusion Implicit Models (DDIM), which presented a deterministic generative process
defined by the equation:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

(t)
θ (xt)√

αt

)
+
√

1− αt−1 − σ2
t · ϵ

(t)
θ (xt)︸ ︷︷ ︸ “direction pointing to xt” + σtϵt︸︷︷︸ random noise

(2)

We observe that the random noise term acts as a brownian motion component, driving stochastic sample generation when
σt > 0. This insight motivates our approach: by controlling the magnitude of this brownian motion, we can systematically
explore a broader latent space of the diffusion model. We modify the DDIM formulation by introducing a scaling factor η that
controls the random noise component:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

(t)
θ (xt)√

αt

)
+
√

1− αt−1 − σ2
t · ϵ

(t)
θ (xt) + η︸︷︷︸

scale to control random noise

σtϵt (3)
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Figure 9. Visualization of image generation by models that erased ”English springer spaniel”. We believe the unique dog of the GA images
represents a ”memory sink”, redirecting diffusion paths towards this concept despite attack methods attempting to recover English Springer
spaniels.

F. Implementation Details

F.1. Erasure Methods

To evaluate the impact of different concept erasure techniques, we implemented several existing methods and trained models
under controlled settings. Below, we detail the exact configurations for each approach:

F.1.1. Gradient Ascent (GA)

We applied gradient ascent by simply flipping the sign of the standard training loss of Stable Diffusion. The training images
consist of pre-generated images from the original model and their corresponding prompts. For each concept, we used 500
diverse images and fine-tuned for 60 steps, except for English Springer Spaniel and Garbage Truck where we used 10 steps.
One thing to note about GA is that it can easily break the model’s overall utility if trained for too many iterations. Hence, we
used batch size of 5 with gradient accumulation step of 4, and a learning rate of 1× 10−5.

F.1.2. Erased Stable Diffusion (ESD-x & ESD-u)

We fine-tuned for 200 steps using a learning rate of 2× 10−5. For each concept, we used 2000 training images.
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Figure 10. Erasing “Van Gogh” concept using different methods.

F.1.3. Unified Concept Editing (UCE)

We fine-tuned for 200 steps with an empty guiding concept and an erase scale of 1.

F.1.4. Task Vector (TV)

To get the fine-tuned model for computing task vectors, we fine-tuned each model on 500 images for 200 steps, using a
learning rate of 1× 10−5. We used batch size of 4 and gradient accumulation step of 4. For erasure, we set the editing strength
α = 1.75.

F.2. Evaluation Protocol

F.2.1. CLIP Evaluation

All similarity assessments were performed using CLIP ViT (openai/clip-vit-base-patch32).

F.2.2. Inversion Consistency

First, we determined a ground truth CLIP embedding for the memory sink concept. Next, after inverting the memory sink
concept in both the original and edited models, we generated images from both models using the same 100 seeds per concept.
We then measured the average Euclidean CLIP distance of these embeddings from the ground truth memory sink concept to
determine how closely they replicated the target concept.



ESD-uUCE ESD-xGA
U

n
le

ar
n
D

if
f 

A
tt

ac
k

N
o
is

in
g
 

A
tt

ac
k

T
ex

tu
al

 
in

v
er

si
o

n
E

ra
se

d
 

M
o
d
el

TV

Figure 11. Erasing “Picasso” concept using different methods.

F.3. Concepts
We consider a set of 10 object concepts: English Springer Spaniel, airliner, garbage truck, parachute, cassette player, chainsaw,
tench, French horn, golf ball, and church; alongside 3 distinct art styles: Van Gogh, Picasso, and Andy Warhol. This selection
allows us to evaluate the impact of concept erasure across both tangible objects and artistic styles, ensuring a diverse range of
visual and semantic attributes in our analysis.

F.4. Attack Methods
To assess the resilience of erasure methods against adversarial strategies, we conducted various attack experiments using a
dataset of 100 prompts spanning 13 concepts (10 objects, 3 styles), each evaluated using unique seeds.

F.4.1. Textual Inversion Attack
Training involved 100 images, optimized for 3000 steps using a learning rate of 5× 10−4.

F.4.2. Inference Time Noising Attack
Seven different noise scaling values (ηs) were used: 1.3, 1.5, 1.7, 1.75, 1.8, 1.85, and 1.9. Additionally, six different variance
scales were applied: 0.97, 1.0, 1.02, 1.03, 1.035, and 1.04. A full grid search over the 42 combinations was conducted,
generating 42 samples per prompt/experiment. The CLIP model then selected the generated image with the highest similarity
score as the most effective attack instance.



F.4.3. UnlearnDiffAtk
The model was trained using a learning rate of 0.01 and a weight decay of 0.1, with the classifier parameter set to K = 3.
ImageNet was used as the classifier for object-based erasures, while a custom classifier from the UnlearnDiffAtk repository
was used for artist styles. Due to computational cost, UnlearnDiffAtk was evaluated on 10 prompts per concept, with 40
samples per experiment, where each sample was generated through 40 optimization steps.

F.4.4. Inpainting Attack
The inpainting pipeline was based on Stable Diffusion 1.5 and implemented via Hugging Face’s
StableDiffusionInpaintPipeline. Base images were 512×512 pixels and were masked with a 225×225
white box at the center. Source images were generated using Stable Diffusion 1.4. CLIP scores were computed only on the
masked area to prevent artificially inflated similarity scores.
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