
ConceptMix++: Leveling the Playing Field in Text-to-Image
Benchmarking via Iterative Prompt Optimization

Haosheng Gan, Berk Tinaz, Mohammad Shahab Sepehri, Zalan Fabian, Mahdi Soltanolkotabi
University of Southern California

Los Angeles, CA 90089
{woodygan, tinaz, sepehri, zfabian, soltanol}@usc.edu

Abstract

Current text-to-image (T2I) benchmarks evaluate models
on rigid prompts, potentially underestimating true gener-
ative capabilities due to prompt sensitivity and creating bi-
ases that favor certain models while disadvantaging oth-
ers. We introduce ConceptMix++, a framework that dis-
entangles prompt phrasing from visual generation capa-
bilities by applying iterative prompt optimization. Build-
ing on ConceptMix, our approach incorporates a multi-
modal optimization pipeline that leverages vision-language
model feedback to refine prompts. Through extensive exper-
iments across multiple diffusion models, we show that opti-
mized prompts significantly improve compositional genera-
tion performance, revealing previously hidden model capa-
bilities and enabling fairer comparisons across T2I models.
Our analysis reveals that certain visual concepts – such as
spatial relationships and shapes – benefit more from opti-
mization than others, suggesting that existing benchmarks
systematically underestimate model performance in these
categories. Additionally, we find strong cross-model trans-
ferability of optimized prompts, indicating shared prefer-
ences for effective prompt phrasing across models.

1. Introduction
Text-to-image (T2I) generation aims to synthesize images
based on user-specified textual descriptions. Diffusion
models (DM) [4, 17] have established state-of-the-art in
image [3, 5, 11, 14, 16], audio [9], and video generation
[6]. In the specific domain of T2I generation, DM-based
approaches have become the dominant paradigm [14, 15].
To enable systematic evaluation and comparison of DM-
based T2I models, several benchmarks have been proposed
[2, 7, 19]. However, evaluating and comparing these mod-
els remains challenging due to their prompt sensitivity [18].
For example, as illustrated in Figure 1, two prompts ex-
pressing the same scene (”four cows”, ”glass texture”, ”tiny
rose”) yield drastically different results depending on how
they are phrased. One prompt produces a successful gener-
ation (bottom), while the other fails entirely (top).

Figure 1. Text-to-image models are sensitive to the specific phras-
ing of the input prompt, thus using a rigid prompt format may
underestimate generation capabilities.

To address this limitation, we propose ConceptMix++, a
framework that disentangles prompt understanding from vi-
sual generation capabilities via prompt optimization. Build-
ing on ConceptMix [19], our approach incorporates a
multimodal optimization module that leverages feedback
from vision-language models to iteratively refine prompts.
Through extensive experiments with multiple state-of-the-
art diffusion models, we demonstrate that:
• Optimized prompts substantially improve compositional

generation performance across architectures.
• Visual concept categories (e.g., spatial relations, shapes)

benefit unevenly from optimization, highlighting
category-specific bottlenecks.

• Optimized prompts exhibit cross-model transferability,
suggesting shared preferences in effective prompting.

ConceptMix++ offers a more nuanced lens for evaluating
T2I models, surfacing capabilities that conventional bench-
marks may overlook and exposing fundamental limitations
in current evaluation methodologies.

2. Method
Overview of our framework– ConceptMix++ is a frame-
work designed to disentangle prompt phrasing from visual
synthesis abilities of T2I models. Our key insight is that by
adapting and optimizing prompts for each model individu-
ally, we can more accurately assess their true visual gener-
ation potential.

Our framework operates in three-stages:
1. Baseline prompt evaluation: Evaluate model perfor-

mance using standard benchmark prompts.
2. Prompt optimization: Use our prompt optimization mod-

ule to iteratively refine prompts tailored to each model.
3. Capability analysis: Assess each model’s full visual syn-

thesis ability under optimized prompting.
This methodology allows for a more nuanced analy-

sis of model capabilities, revealing: (1) performance gains
(2) persistent limitations that remain even with optimized
prompts.

Evaluating baseline performance– For baseline eval-
uation, we adopt the ConceptMix [19] benchmark, which
measures compositional generation capabilities across a
broad range of visual concept categories. This benchmark
is particularly well-suited for capability analysis because:
• It provides fine-grained evaluations across 8 diverse vi-

sual concept categories.
• It supports scalable compositional complexity denoted

with complexity level k (where k ranges between 1 and
7)
At each complexity level k, ConceptMix specifies k + 1

criteria, each corresponding to one of the 8 visual concept
categories. The initial prompt p0 is generated by GPT-4o
by providing it with full list of criteria. The diffusion model
then synthesizes an image I from this prompt. To evaluate
the generated image, ConceptMix utilizes GPT-4o acting as
a verifier V which answers a yes/no question for each crite-
rion to determine whether it has been satisfied. The image
receives a score of 1 only if all criteria are met:

s(I) =
k+1∏
i=1

1(V(“Is criteria i satisfied ?”|I) = "Yes")

where 1 is the indicator function that equals 1 if the verifier
thinks the criteria is satisfied and 0 otherwise.

Multimodal prompt optimization– To systematically
enhance prompts, we introduce a prompt optimization mod-
ule inspired by TextGrad [20], tailored specifically for the
text-to-image (T2I) domain. As illustrated in Figure 2, our
module operates end-to-end across the T2I generation and
evaluation pipeline, refining prompts based on visual out-
comes.

Given a T2I diffusion model D and a vision-language
evaluator V , the goal is to find an optimal prompt p∗ that

Figure 2. Overview of our prompt optimization framework. Start-
ing with an initial prompt, our iterative process first generates
images using a diffusion model. Next, an evaluator scores and
provides feedback. Finally, LLM optimizer proposes improved
prompts based on past prompt-score pairs.

maximizes the evaluation score:

p∗ = argmax
p
V(D(p))

Here, D(p) denotes the image generated by the diffusion
model from prompt p, and V(I) returns a scalar score as-
sessing how well image I satisfies the specified visual con-
cepts.

The optimization process (Figure 2) follows an iterative
loop:
1. Generate an image It = D(pt) from the current prompt.
2. Evaluate It using the VLM to obtain a score st = V(It)

and feedback ft.
3. Store the prompt, score, and feedback tuple (pt, st, ft)

in a history buffer H , sorted by score.
4. Update the prompt pt+1 = ULLM(pbest, H), where
ULLM(·) is an LLM-based update function.
Unlike gradient-based optimization in continuous

spaces, our method exploits the LLM’s capability to
learn from qualitative feedback and historical patterns,
generating refined prompts in natural language.

To enable more fine-grained and stable updates, we ex-
tend ConceptMix’s binary evaluation to a probabilistic one.
Specifically, we use the likelihood of the affirmative answer
(”Yes”) predicted by the vision-language model for each
criterion:

E[s(I)] =
k+1∏
i=1

P (V(“Is criteria i satisfied ?”|I) = "Yes")

We provide further implementation details and analysis
of the optimization loop in Appendix A.

3. Experiments
3.1. Setup
We apply our ConceptMix++ framework to benchmark
three state-of-the-art diffusion models: stable-diffusion-3.5-
medium [1], playground-v2.5-1024px-aesthetic [10], and
DALL·E 3 [12]. In this setup, we use GPT-4o (2024-08-
06) [8] as both the evaluator and the optimizer.

For each complexity level k = 1 to k = 7, we select 300
datapoints from the ConceptMix benchmark. To reduce the
effect of randomness, we generate 5 images per prompt and
evaluate performance based on two metrics. The average
score is the average across the 5 generations, while best-of-
5 score is the highest score among them.

3.2. Performance Analysis
Table 1 presents the performance comparison between orig-
inal and optimized prompts across all diffusion models and
complexity levels. We observe substantial improvements
following optimization – up to ≈ 20% absolute gains in
both average and best-of-5 scores for mid-range complex-
ity levels (k = 3 to k = 5) across all models. These
gains reflect the significant value of prompt optimization
in unlocking true capabilities, particularly for composi-
tions that require understanding and generating multiple
visual concepts simultaneously. Interestingly, the perfor-
mance gap between original and optimized prompts widens
with increasing k in the low-to-mid range, suggesting that
prompt refinement becomes increasingly beneficial as com-
positional complexity grows. However, at the highest com-
plexity levels (k = 6, k = 7), the gains taper off. This di-
minishing return likely stems from an upper bound imposed
by the model’s capacity itself: the prompts may become too
detailed or domain-shifted compared to the model’s training
distribution, limiting the effectiveness of optimization.

Overall, these results reveal that fixed-prompt bench-
marks substantially underestimate the potential of diffu-
sion models, especially in the moderate complexity regime.
Prompt optimization not only elevates baseline performance
but also provides a fairer, more accurate view of model ca-
pability in real-world, compositional scenarios.

3.3. Category-wise Analysis
To gain deeper insight into the impact of our optimiza-
tion framework, we conduct a category-wise analysis across
eight visual concept categories defined in the ConceptMix
benchmark: color, number, object, shape, size, spatial,
style, and texture. This analysis allows us to examine how
prompt optimization influences specific dimensions of com-
positional generation and to identify which aspects of diffu-
sion model capabilities benefit most from our framework.

For each diffusion model and complexity level, we com-
pute category-specific scores by evaluating performance

1 2 3 4 5 6 7 Av
g

Level Number (k)

co
lor

nu
mbe

r

ob
jec

t

sh
ap

e

siz
e

sp
at

ial

sty
le

te
xtu

re

Av
g

C
at

eg
or

y

+7.0 +10.6 +2.4 +7.7 +3.7 +3.1 +4.0 +5.5

+12.3 -1.5 -6.8 -0.4 -1.9 -0.3 +3.1 +0.6

+0.8 +0.9 +1.0 +1.8 +0.4 +1.3 +1.9 +1.2

+15.3 +17.1 +11.7 +11.0 +9.4 +5.8 +9.9 +11.5

+7.3 +5.6 +12.6 +9.1 +7.0 +3.7 +8.3 +7.7

+4.8 +1.5 +11.3 +6.2 +4.0 +5.9 +8.2 +6.0

-2.8 +7.8 +6.7 +5.7 +7.1 +14.6 +10.4 +7.1

+4.8 +7.8 +8.8 +5.8 +3.8 +7.8 +2.5 +5.9

+6.2 +6.2 +6.0 +5.8 +4.2 +5.2 +6.0 +5.7

(a) DALL·E 3

1 2 3 4 5 6 7 Av
g

Level Number (k)

co
lor

nu
mbe

r

ob
jec

t

sh
ap

e

siz
e

sp
at

ial

sty
le

te
xtu

re

Av
g

C
at

eg
or

y

+7.5 +0.5 +2.7 +4.1 +5.7 +1.7 +2.3 +3.5

+4.6 +3.5 +9.6 +1.6 +6.5 +1.4 +5.4 +4.6

+3.4 +4.0 +2.0 +2.6 +3.6 +2.6 +2.6 +3.0

+0.0 +0.0 +2.1 +11.8 +7.7 +5.3 +3.9 +4.4

+29.3 +20.7 +13.6 +5.5 +9.4 +4.1 +5.2 +12.6

+30.0 +16.4 +14.0 +17.6 +15.8 +10.0 +10.4 +16.3

+3.2 +18.6 +13.9 +11.6 +10.3 +9.7 +9.8 +11.0

+24.4 +12.8 +6.3 +8.9 +7.4 +7.2 +6.3 +10.5

+12.8 +9.6 +8.0 +7.9 +8.3 +5.2 +5.7 +8.2

(b) Stable Diffusion 3.5

Figure 3. Heatmaps showing improvement magnitude across vi-
sual concept categories and complexity levels. Darker red indi-
cates higher improvements, while blue indicates a decline in per-
formance.

on questions associated with each visual concept category.
Formally, for a model M , complexity level k, and category c
with its corresponding set of questions Qc, the score SM,k,c

for an image I is defined as:

SM,k,c(I) =
1

|Qc|
∑
q∈Qc

1(V(q|I) = "yes")

Figure 3 presents heatmap visualizations of category-
wise improvement achieved by our optimization framework
for Stable Diffusion 3.5 and DALL·E 3 across all complex-
ity levels. Corresponding heatmap for Playground v2.5 is
provided in Appendix C.

For Stable Diffusion 3.5, the most significant improve-
ments are observed in spatial and size categories, each
showing an average gain exceeding 12%. Meanwhile, for
DALL·E 3, the most improvement happens for shape with
an average improvement of 11.5%. These observations

Table 1. Performance comparison between original and optimized prompts across different complexity levels k. For each model, we
report both average and best-of-5 scores under default and optimized prompts, highlighting performance gaps revealed through prompt
optimization.

Model Metric k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

DALL·E 3

average (default) 0.824 ± 0.021 0.621 ± 0.015 0.460 ± 0.025 0.292 ± 0.025 0.207 ± 0.024 0.139 ± 0.028 0.085 ± 0.012
average (optimized) 0.882 ± 0.009 0.723 ± 0.023 0.605 ± 0.024 0.415 ± 0.028 0.313 ± 0.029 0.218 ± 0.009 0.127 ± 0.019
best-of-5 (default) 0.945 0.853 0.668 0.537 0.449 0.306 0.191
best-of-5 (optimized) 0.996 0.943 0.868 0.761 0.648 0.505 0.364

SD 3.5

average (default) 0.736 ± 0.018 0.503 ± 0.024 0.351 ± 0.010 0.226 ± 0.020 0.157 ± 0.009 0.089 ± 0.009 0.067 ± 0.006
average (optimized) 0.877 ± 0.006 0.662 ± 0.008 0.512 ± 0.020 0.356 ± 0.019 0.277 ± 0.017 0.172 ± 0.016 0.123 ± 0.016
best-of-5 (default) 0.913 0.762 0.595 0.483 0.360 0.232 0.201
best-of-5 (optimized) 0.973 0.856 0.776 0.678 0.579 0.423 0.298

PG v2.5

average (default) 0.732 ± 0.017 0.451 ± 0.023 0.241 ± 0.020 0.117 ± 0.010 0.062 ± 0.009 0.017 ± 0.004 0.003 ± 0.002
average (optimized) 0.831 ± 0.010 0.572 ± 0.006 0.351 ± 0.014 0.199 ± 0.009 0.116 ± 0.013 0.047 ± 0.009 0.019 ± 0.005
best-of-5 (default) 0.856 0.640 0.440 0.233 0.167 0.047 0.014
best-of-5 (optimized) 0.936 0.783 0.601 0.373 0.278 0.128 0.057

highlight the fact that spatial and size categories for Stable
Diffusion 3.5 and shape category for DALL·E 3 require pre-
cise prompt formulations. On the other hand, the object cat-
egory exhibits the least improvement for both models, with
an average gain of 3% for Stable Diffusion 3.5 and 1.2% for
DALL·E 3 respectively. This is mainly because the original
prompts already perform well in this category, leaving lim-
ited room for further gains. Additionally, the number cat-
egory shows marginal improvements in both models. This
can be attributed to the well-known challenge that genera-
tive models have with accurately representing specific quan-
tities ([7, 13, 16]), compounded by the fact that specifying
a number offers little flexibility for refinement. As a result,
the performance in this category remains low both before
and after optimization, suggesting that prompt refinement
alone is insufficient to overcome this limitation.

3.4. Cross-Model Prompt Transferability

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Sc
or

e

Original Prompt
Transferred Prompt
Optimized Prompt

Figure 4. Average score of Stable Diffusion 3.5 using original
prompts, prompts optimized for Stable Diffusion 3.5 itself, and
prompts optimized for DALL·E 3.

A key question about our framework is whether the
prompts optimized for one model can effectively generalize
to another. To investigate this, we evaluate the performance
of Stable Diffusion 3.5 when using prompts that were opti-
mized for DALL·E 3. The results, shown in Figure 4, com-
pare the average scores of Stable Diffusion 3.5 using orig-
inal prompts, prompts optimized for Stable Diffusion 3.5
itself, and prompts optimized for DALL·E 3. Appendix D
provides additional experiments addressing this question.

We observe that Stable Diffusion 3.5 performs signifi-
cantly better with DALL·E 3-optimized prompts compared
to original prompts, and its performance closely approaches
that achieved with prompts optimized for itself. This in-
dicates a high degree of cross-model transferability, sug-
gesting that the optimized prompts capture phrasing pat-
terns that are effective among all models. These findings
imply that different diffusion models may share underlying
prompt preferences, making cross-model prompt reuse a vi-
able strategy for enhancing generation quality with reduced
optimization overhead.

4. Conclusion
In this work, we introduce ConceptMix++, a novel frame-
work for fair benchmarking of text-to-image diffusion mod-
els through iterative prompt optimization. Our experiments
show that ConceptMix++ consistently enhances model per-
formance, revealing their true compositional generation ca-
pabilities. We further analyze the impact of our framework
across different visual concept categories, identifying which
aspects benefit most from prompt refinement. Addition-
ally, we demonstrate that optimized prompts exhibit strong
cross-model transferability, suggesting shared prompt pref-
erences among models. These findings indicate that fixed-
prompt benchmarks substantially underestimate the capa-
bilities of text-to-image models and highlight the critical
role of prompt formatting in fully realizing their generative
potential.

5. Acknowledgements
We would like to thank Microsoft for an Accelerating Foun-
dation Models Research grant that provided the OpenAI
credits enabling this work.

References
[1] Stability AI. Stable diffusion 3.5, 2024. 3
[2] Eslam Mohamed Bakr, Pengzhan Sun, Xiaoqian Shen,

Faizan Farooq Khan, Li Erran Li, and Mohamed Elhoseiny.
Hrs-bench: Holistic, reliable and scalable benchmark for
text-to-image models. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 20041–
20053, 2023. 1

[3] Prafulla Dhariwal and Alex Nichol. Diffusion Mod-
els Beat GANs on Image Synthesis. arXiv preprint
arXiv:2105.05233, 2021. 1

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffu-
sion Probabilistic Models. arXiv preprint arXiv:2006.11239,
2020. 1

[5] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet,
Mohammad Norouzi, and Tim Salimans. Cascaded diffusion
models for high fidelity image generation. J. Mach. Learn.
Res., 23(47):1–33, 2022. 1

[6] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. arXiv preprint arXiv:2204.03458, 2022. 1

[7] Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and
Xihui Liu. T2i-compbench: A comprehensive bench-
mark for open-world compositional text-to-image genera-
tion. Advances in Neural Information Processing Systems,
36:78723–78747, 2023. 1, 4

[8] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perel-
man, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Weli-
hinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card.
arXiv preprint arXiv:2410.21276, 2024. 3

[9] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. Diffwave: A versatile diffusion model for
audio synthesis. arXiv preprint arXiv:2009.09761, 2020. 1

[10] Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Lin-
miao Xu, and Suhail Doshi. Playground v2.5: Three insights
towards enhancing aesthetic quality in text-to-image genera-
tion. arXiv preprint arXiv:2402.17245, 2024. 3

[11] Alex Nichol and Prafulla Dhariwal. Improved De-
noising Diffusion Probabilistic Models. arXiv preprint
arXiv:2102.09672, 2021. 1

[12] OpenAI. Dall·e 3, 2024. 3
[13] Vitali Petsiuk, Alexander E Siemenn, Saisamrit Surbehera,

Zad Chin, Keith Tyser, Gregory Hunter, Arvind Raghavan,
Yann Hicke, Bryan A Plummer, Ori Kerret, et al. Human
evaluation of text-to-image models on a multi-task bench-
mark. arXiv preprint arXiv:2211.12112, 2022. 4

[14] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 1

[15] Chitwan Saharia, Jonathan Ho, William Chan, Tim
Salimans, David J. Fleet, and Mohammad Norouzi.
Image Super-Resolution via Iterative Refinement.
arXiv:2104.07636 [cs, eess], 2021. 1

[16] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022. 1, 4

[17] Yang Song and Stefano Ermon. Generative Model-
ing by Estimating Gradients of the Data Distribution.
arXiv:1907.05600 [cs, stat], 2020. 1

[18] Sam Witteveen and Martin Andrews. Investigating prompt
engineering in diffusion models, 2022. 1

[19] Xindi Wu, Dingli Yu, Yangsibo Huang, Olga Russakovsky,
and Sanjeev Arora. Conceptmix: A compositional image
generation benchmark with controllable difficulty. arXiv
preprint arXiv:2408.14339, 2024. 1, 2

[20] Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng
Liu, Zhi Huang, Carlos Guestrin, and James Zou. Textgrad:
Automatic” differentiation” via text. arXiv preprint
arXiv:2406.07496, 2024. 2

ConceptMix++: Leveling the Playing Field in Text-to-Image
Benchmarking via Iterative Prompt Optimization

Supplementary Material

A. Additional details on prompt optimization
module

A.1. Algorithm
Algorithm 1 outlines the complete prompt optimization
framework:

Algorithm 1 Text2Image Grad

Require: Initial prompt p0, diffusion model D, VLM V ,
LLM ULLM, maximum iterations T

Ensure: Optimized prompt p∗

Initialize history tableH ← ∅
Initialize best score sbest ← −∞
Initialize best prompt pbest ← p0
for t = 0 to T do

Generate image It ← D(pt)
Evaluate image and generate feedback (st, ft) ←
V(It)
Update historyH ← H∪ {(pt, st, ft)}
if st > sbest then
sbest ← st
pbest ← pt

end if
if t == T then

break
end if
Generate improved prompt pt+1 ← ULLM(pbest,H)

end for
return pbest

A.2. Analogy with traditional Gradient Descent
Traditional gradient descent optimization iteratively up-
dates parameters using the gradient of the objective function
according to the following update rule:

θt+1 = θt − η∇f(θt) (1)

where θt represents the parameters at iteration t, η is the
learning rate, and ∇f(θt) is the gradient of the objective
function f with respect to θt.

In the context of text-to-image generation, our objective
is to maximize the score function V(D(p)), where p is the
prompt, D is the diffusion model, and V is the VLM eval-
uation. However, we cannot directly compute the gradient
∇pV(D(p)) for several reasons:
• The prompt p exists in a discrete, non-Euclidean space

rather than a continuous parameter space.

• The diffusion process D involves complex, non-
differentiable stochastic sampling procedures.

• The VLM evaluation V is similarly complex and not di-
rectly differentiable with respect to its inputs.
To address these challenges, our prompt optimization

framework draws inspiration from numerical optimization
methods to approximate the gradient and update direction.
The key insight is that we can view our optimization pro-
cess through the lens of zeroth-order optimization methods,
particularly finite-difference approximations of gradients.

Consider how traditional finite-difference methods ap-
proximate gradients:

∇f(θ) ≈ f(θ + δ)− f(θ)

δ
(2)

In our context, we generalize this approach to work with
a collection of prompt-score pairs {(pi, si)} that represent
different points in the prompt space. Each pair provides
information about the evaluation function V(D(p)) at dif-
ferent locations.

Instead of just using point-wise differences, we leverage
the entire history H of prompt-score-feedback tuples to ap-
proximate a more robust update direction. The LLM, acting
as a sophisticated non-parametric estimator, analyzes this
historical data to infer the direction in the prompt space that
is most likely to increase the objective function.

Conceptually, the prompt update process at time step t
can be represented as:

pt+1 = pbest +∆pbest (3)

where
∆pbest ≈ ULLM(pbest,H) (4)

and pbest is the best prompt at time step t based on scores.
Here, ULLM serves as both the gradient approximator and

the update direction determiner. By analyzing the relation-
ship between previous prompts and their resulting scores,
the LLM effectively constructs a local approximation of the
prompt-score landscape and generates a new prompt that is
likely to achieve a higher score.

A key distinction from standard gradient descent is our
use of pbest rather than pt as the base for updates. In the
context of discrete prompt optimization, unlike continuous
optimization where small steps can be taken with controlled
learning rates, a single prompt update may result in signifi-
cant performance degradation due to the stochasticity of dif-
fusion models and the discrete nature of language. There-
fore, we will need a more conservative strategy of updating

the prompt. By always starting from the best-performing
prompt, we establish a reliable foundation for exploration.

Moreover, even iterations that do not improve upon pbest
contribute valuable information to H, enriching the LLM’s
understanding of the prompt-performance landscape. This
accumulated knowledge enhances the accuracy of subse-
quent update steps, effectively implementing a form of
trust-region optimization that balances exploitation and ex-
ploration.

This strategy mitigates the risk of divergence in the op-
timization process while still allowing for thorough explo-
ration of the prompt space. Although this approach may
theoretically limit escape from local optima, the high di-
mensionality of the prompt space and the relatively small
number of iterations (T = 5) make this a favorable trade-
off, prioritizing stable improvement over potentially unsta-
ble exploration.

A.3. Prompt update process

In our framework, we combine the gradient approximation
and update steps into a single operation performed by an
LLM. This design choice is motivated by the observation
that separating these steps—first determining how to im-
prove the prompt and then implementing those improve-
ments—introduces unnecessary complexity and potential
information loss.

By unifying these steps, we enable the LLM to reason
holistically about the optimization process:

pt+1 = ULLM(pbest,H) (5)

The LLM receives the best-performing prompt so far and
the complete history of previous prompt-score-feedback tu-
ples. It then analyzes patterns in this data to identify
what aspects of successful prompts contributed to their high
scores and what aspects of unsuccessful prompts led to
lower scores. Based on this analysis, it generates a new
prompt that incorporates successful elements while address-
ing identified shortcomings.

This approach leverages the LLM’s capabilities in sev-
eral ways:

• Pattern recognition: The LLM can identify subtle pat-
terns in the relationship between prompt characteristics
and resulting scores.

• Contextual understanding: The LLM can interpret
feedback in the context of specific prompts and images.

• Generative capability: The LLM can produce entirely
new prompt formulations rather than being limited to pre-
defined update rules.

A.4. Hyperparameters and example of optimizing
ConceptMix

A.4.1. Hyperparameters
Following the TextGrad approach [20], we fix the number
of iterations to 5 for all experiments, which provides a good
balance between computational efficiency and optimization
effectiveness. For our implementation of the framework, we
use GPT-4o in two critical roles: first, as the VLM (V) that
evaluates generated images and provides feedback through
concept-specific scoring; and second, as the LLM (ULLM)
that generates improved prompts based on the accumulated
history of previous iterations. This dual application of GPT-
4o creates a unified optimization framework where both
evaluation and improvement processes leverage the same
multimodal understanding capabilities.

A.4.2. Example of optimizing ConceptMix
Here we provide a detailed example of the our prompt opti-
mization process applied to a prompt from the ConceptMix
dataset. This example illustrates our implementation of Al-
gorithm 1 in practice. The visualization is shown in Figure
5.

Criteria We begin with the criteria:

Criteria C

• Does the image contain cow?
• Does the image contain roses?
• Is the rose tiny in size?
• Does the image contain exactly 4 cows?
• Do the cows have a glass texture?
• Are the cows black?

Initial Prompt Evaluation We then pick the initial
prompt p0 from the ConceptMix dataset:

Initial Prompt p0

The image features four black cows with a glass tex-
ture. There is also one tiny rose present.

After generating an image I0 = D(p0) using our diffu-
sion model, for each criterion ci ∈ C we score the image
using GPT-4o as our VLM V with the following prompt:

VLM Score Prompt

Does the image contain cow? Respond ‘Yes’ or
‘No’. [IMAGE]

For each criterion ci at timestep t, we get a score st,i =
P (V(ci + “Respond ‘Yes’ or ‘No’.”|I) = "Yes") using

Does the image contain cow?
Does the image contain roses?
Is the rose tiny in size?
Does the image contain exactly 4 cows?
Do the cows have a glass texture?
Are the cows black?

The image features four black cows with a glass texture.
There is also one tiny rose present.

Does the image contain cow?
Does the image contain roses?
Is the rose tiny in size?
Does the image contain exactly 4 cows?
Do the cows have a glass texture?
Are the cows black?

Create an image featuring exactly four cows, each
distinctly black with a transparent, glass-like texture
that allows for light reflection and refraction, giving
them a shiny and translucent appearance. Ensure these

cows are clearly visible and not depicted as reflections
or silhouettes. Include a single rose in the image,

ensuring it is significantly smaller than the cows to
emphasize its tiny size. Position the tiny rose

distinctly and separately.

Figure 5. Example of the our prompt optimization process. Left: Before optimization, the image shows 3 black cows with reflections and
a rose that is not tiny. The corresponding prompt satisfies only 3 out of 6 criteria. Right: After optimization, the image shows exactly 4
black cows with glass texture and a tiny rose, satisfying all 6 criteria.

the probability distribution of the first new token, and feed-
back ft,i. The overall score st for the current timestep is
calculated as the product of all individual criterion scores:

st =

k+1∏
i=1

st,i (6)

where k is the number of criteria −1 (in this case, k = 5).
Similarly, for each criterion ci ∈ C, we get the feedback
with the following prompt:

VLM Feedback Prompt

Does the image contain cow? If the answer is ”No”,
please explain in one sentence the specific issue
that prevents the image from satisfying the ques-
tion; otherwise, just output that the image satisfies
the question. [IMAGE]

The overall feedback ft is the string produced by con-
catenating each criterion ci and its corresponding feedback
ft,i for all criteria. Here’s an example of combined feed-
back for the initial prompt (t = 0):

VLM Feedback Results

Does the image contain cow? The image satisfies
the question.
Does the image contain roses? The image satisfies
the question.
Is the rose tiny in size? The rose is nearly as tall as
the cows, which is not tiny in size.
Does the image contain exactly 4 cows? The im-
age does not contain exactly 4 cows because it only
shows 3 cows and their reflections.
Do the cows have a glass texture? No, the cows
do not have a glass texture as they appear as solid,
opaque silhouettes without transparency or reflec-
tive qualities.
Are the cows black? The image satisfies the ques-
tion.

We then add the tuple (p0, s0, f0) to the history table H
and prompt the LLM to generate an improved prompt:

LLM Optimization Prompt

I’m trying to generate an image that matches spe-
cific requirements. Please create a concise descrip-
tion that will help the model generate an image that
satisfies all the requirements and get a high product
of scores. Here’s the context:
1. Requirements: The image must satisfy these cri-
teria (all should receive ’Yes’ answers): {criteria}
2. History: Previous attempts sorted by perfor-
mance (best to worst): {formatted history table}
Based on the requirements and previous attempts,
please provide a new, improved description for the
image generation model. The description should:
• Be specific to guide the image generation
• Address all the required elements from the ques-

tions
• Learn from previous attempts, especially what

worked in higher-scoring versions
Now please give a concise description to help the
model generate an image that meets all the require-
ments and gets the highest product of scores.

Iterative Optimization This prompt optimization pro-
cess continues for a total of T = 5 iterations, with each
new prompt pt being evaluated to produce a score st and
feedback ft. The history table H is updated at each iter-
ation, and the LLM uses this accumulated information to
generate increasingly refined prompts.

Final Result After the iterative optimization process, we
obtain our final optimized prompt p∗:

Final Optimized Prompt p∗

Create an image featuring exactly four cows, each
distinctly black with a transparent, glass-like texture
that allows for light reflection and refraction, giving
them a shiny and translucent appearance. Ensure
these cows are clearly visible and not depicted as
reflections or silhouettes. Include a single rose in
the image, ensuring it is significantly smaller than
the cows to emphasize its tiny size. Position the tiny
rose distinctly and separately from the cows.

This example demonstrates how our prompt optimiza-
tion framework systematically improves the initial prompt
through targeted feedback and iterative optimization, result-
ing in increasingly accurate representations of the desired
concepts. At each stage, the algorithm leverages both vi-
sual evaluation and linguistic refinement capabilities of the
LLM to navigate the complex prompt space effectively.

B. Model-wise performance charts

To better understand how prompt optimization reveals the
true capabilities of text-to-image models, we present com-
prehensive performance comparisons across all tested dif-
fusion models. Figure 6 visualizes both the mean score
and best-of-5 score metrics for each model before and af-
ter prompt optimization across varying complexity levels
(k = 1 to k = 7).

The charts clearly illustrate several key findings:

• Substantial Performance Gaps: All models demon-
strate significant improvements with optimized prompts,
particularly at moderate complexity levels (k=3 to k=5).
This confirms our hypothesis that conventional bench-
marks using rigid prompts underestimate models’ true vi-
sual synthesis capabilities.

• Persistent Complexity Ceiling: Despite optimization,
all models show declining performance as complexity in-
creases, revealing fundamental architectural limitations
that better prompting alone cannot overcome.

• Model-Specific Improvement Patterns: While DALL·E
3 achieves the highest absolute performance, SD 3.5
shows the largest relative gains from optimization, sug-
gesting greater headroom for prompt engineering in this
architecture.

• Best-of-5 vs. Average Metrics: The gap between op-
timized and original prompts is consistently more pro-
nounced in the best-of-5 metric, indicating that optimized
prompts not only improve average performance but also
enable higher ceiling capabilities when multiple genera-
tions are considered.

These visualizations highlight the importance of more
flexible evaluation frameworks in benchmarking text-to-
image models. The substantial performance differences
between standard and optimized prompts across all mod-
els demonstrate that conventional rigid benchmarking ap-
proaches may significantly underrepresent actual model ca-
pabilities, particularly for certain architectures like SD 3.5.
On the other hand, the persistent decline of improvement
at higher complexity levels still reveals fundamental limita-
tions that require architectural innovations.

C. Category-wise capability analysis

C.1. Heatmap analysis across models
Figure 7, Figure 8, and Figure 9 present heatmap visualiza-
tions of improvements across all visual concept categories
for DALL·E 3, Stable Diffusion 3.5, and Playground v2.5,
respectively. These visualizations reveal important patterns
in how prompt optimization affects each model’s perfor-
mance across different visual categories.

Similar to DALL·E 3 and Stable Diffusion 3.5,
Playground v2.5 shows significant overall improvements

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Sc
or

e

Without Optimization
With Optimization

(a) SD 3.5: Average Score

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
of

 5
 S

co
re

Without Optimization
With Optimization

(b) SD 3.5: Best-of-5 Score

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Sc
or

e

Without Optimization
With Optimization

(c) Playground v2.5: Average Score

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
of

 5
 S

co
re

Without Optimization
With Optimization

(d) Playground v2.5: Best-of-5 Score

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Sc
or

e

Without Optimization
With Optimization

(e) DALL·E 3: Average Score

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
of

 5
 S

co
re

Without Optimization
With Optimization

(f) DALL·E 3: Best-of-5 Score

Figure 6. Performance comparison across models and complexity levels, showing original vs. optimized prompt performance. Left column:
Average Score; Right column: Best-of-5 Score. Top row: Stable Diffusion 3.5; Middle row: Playground v2.5; Bottom row: DALL·E 3.

1 2 3 4 5 6 7 Av
g

Level Number (k)

co
lor

nu
mbe

r

ob
jec

t

sh
ap

e

siz
e

sp
at

ial

sty
le

te
xtu

re

Av
g

C
at

eg
or

y

+7.0 +10.6 +2.4 +7.7 +3.7 +3.1 +4.0 +5.5

+12.3 -1.5 -6.8 -0.4 -1.9 -0.3 +3.1 +0.6

+0.8 +0.9 +1.0 +1.8 +0.4 +1.3 +1.9 +1.2

+15.3 +17.1 +11.7 +11.0 +9.4 +5.8 +9.9 +11.5

+7.3 +5.6 +12.6 +9.1 +7.0 +3.7 +8.3 +7.7

+4.8 +1.5 +11.3 +6.2 +4.0 +5.9 +8.2 +6.0

-2.8 +7.8 +6.7 +5.7 +7.1 +14.6 +10.4 +7.1

+4.8 +7.8 +8.8 +5.8 +3.8 +7.8 +2.5 +5.9

+6.2 +6.2 +6.0 +5.8 +4.2 +5.2 +6.0 +5.7

Figure 7. Heatmap showing improvement magnitude (optimized - original) for DALL·E 3 across visual concept categories and complexity
levels. Darker red colors indicate larger capability gaps, revealing where prompt optimization most significantly improves performance,
while blue indicates negative improvement.

1 2 3 4 5 6 7 Av
g

Level Number (k)

co
lor

nu
mbe

r

ob
jec

t

sh
ap

e

siz
e

sp
at

ial

sty
le

te
xtu

re

Av
g

C
at

eg
or

y

+7.5 +0.5 +2.7 +4.1 +5.7 +1.7 +2.3 +3.5

+4.6 +3.5 +9.6 +1.6 +6.5 +1.4 +5.4 +4.6

+3.4 +4.0 +2.0 +2.6 +3.6 +2.6 +2.6 +3.0

+0.0 +0.0 +2.1 +11.8 +7.7 +5.3 +3.9 +4.4

+29.3 +20.7 +13.6 +5.5 +9.4 +4.1 +5.2 +12.6

+30.0 +16.4 +14.0 +17.6 +15.8 +10.0 +10.4 +16.3

+3.2 +18.6 +13.9 +11.6 +10.3 +9.7 +9.8 +11.0

+24.4 +12.8 +6.3 +8.9 +7.4 +7.2 +6.3 +10.5

+12.8 +9.6 +8.0 +7.9 +8.3 +5.2 +5.7 +8.2

Figure 8. Heatmap showing improvement magnitude (optimized - original) for Stable Diffusion 3.5 across visual concept categories and
complexity levels. Darker red colors indicate larger capability gaps, revealing where prompt optimization most significantly improves
performance.

through prompt optimization (+7.1% average), but with
unique category-specific strengths. Texture show the

strongest consistent gains (+11.9% average), while object
category shows the least improvement (+1.9% average), in-

1 2 3 4 5 6 7 Av
g

Level Number (k)

co
lor

nu
mbe

r

ob
jec

t

sh
ap

e

siz
e

sp
at

ial

sty
le

te
xtu

re

Av
g

C
at

eg
or

y

+11.1 -2.7 +1.9 +4.6 +6.6 +7.8 +2.5 +4.5

+4.7 +2.0 +6.7 +7.2 +6.7 +6.3 +5.0 +5.5

+1.7 +1.9 +1.9 +1.8 +1.6 +2.6 +1.4 +1.9

+7.7 +10.0 -0.3 +7.5 +1.9 +2.4 +4.0 +4.7

+11.4 +12.9 +11.8 +10.2 +5.2 +8.3 +6.8 +9.5

+15.9 +15.4 +12.5 +11.3 +9.7 +3.3 +5.8 +10.5

+1.6 +5.0 +6.7 +8.4 +10.6 +12.9 +11.1 +8.0

+28.3 +9.0 +16.7 +7.5 +5.2 +10.6 +6.2 +11.9

+10.3 +6.7 +7.2 +7.3 +5.9 +6.8 +5.4 +7.1

Figure 9. Heatmap showing improvement magnitude (optimized - original) for Playground v2.5 across visual concept categories and
complexity levels. Darker red colors indicate larger capability gaps, revealing where prompt optimization most significantly improves
performance, while blue indicates negative improvement.

dicating that original prompts were already relatively effec-
tive for simple object generation.

C.2. Radar graph analysis by complexity level
To better visualize how each model responds to prompt op-
timization across different complexity levels, Figures 10
through 16 present radar graphs comparing the three models
at each complexity level k from 1 to 7.

D. Cross-model prompt transferability
To investigate whether the prompts optimized for one model
can effectively generalize to another, we conduct transfer-
ability experiments. For each pair of models (Msrc,Mtgt),
we:
1. Run our prompt optimization framework using Msrc

as the backbone diffusion model to obtain optimized
prompts p∗src

2. Evaluate these transferred prompts p∗src on target model
Mtgt

3. Compare the performance against both the original
prompt p0 and Mtgt’s self-optimized prompts p∗tgt
Our results demonstrate transferability between models,

with transferred prompts achieving better performance than
original prompts in most cases. This finding also has im-
portant practical implications. It suggests that practition-
ers can leverage a cost-effective optimization workflow: (1)
optimize prompts using more accessible or computationally

efficient models, and (2) apply these enhanced prompts to
more powerful models for final generation. This approach
significantly reduces the computational overhead and API
costs associated with prompt optimization.

D.1. Model-specific transfer patterns
The effectiveness of prompt transfer varies depending on
the source and target models. Some key observations:

• SD 3.5→ DALL·E 3: Prompts optimized for Stable Dif-
fusion 3.5 transfer effectively to DALL·E 3, achieving ap-
proximately 85% of the performance gain of DALL·E 3’s
self-optimized prompts.

• Playground v2.5→ DALL·E 3: Similarly, Playground-
optimized prompts transfer well to DALL·E 3, suggesting
these models share similar prompt understanding mecha-
nisms.

• Asymmetric Transfer: Interestingly, transfer effective-
ness is not always symmetric. Prompts optimized for
DALL·E 3 transfer less effectively to other models, sug-
gesting it may have developed more specialized prompt
understanding capabilities.

These transfer patterns provide insights into the shared
conceptual understanding across different model architec-
tures. The transferability suggests that different diffusion
models may learn similar representations of visual concepts
and share underlying prompt preferences, enabling the re-
markable transferability observed in our experiments.

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(a) DALL·E 3

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(b) Stable Diffusion 3.5

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(c) Playground v2.5

Figure 10. Radar graphs showing category improvements for complexity level k = 1 across all three models.

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(a) DALL·E 3

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(b) Stable Diffusion 3.5

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(c) Playground v2.5

Figure 11. Radar graphs showing category improvements for complexity level k = 2 across all three models.

E. Ablation study on optimization iteration
count

A key hyperparameter in our Prompt Optimization frame-
work is the number of optimization iterations T . While
more iterations intuitively seem beneficial, they also in-
crease computational cost and potentially risk overfitting to
the evaluation metric. To investigate the impact of this pa-
rameter, we conducted an ablation study on DALL·E 3 with
varying numbers of iterations: T ∈ {0, 1, 2, 3, 4, 5, 10, 15},
where T = 0 means we use the original prompt. For this
experiment, we fix k = 4.

From Figure 23, we can tell that higher iteration number
doesn’t necessarily give us better prompt. This counterintu-
itive finding can be attributed to several factors:
1. Inherent Stochasticity: Diffusion models like DALL·E

3 have inherent randomness in their generation process.
A prompt that produces high-quality images during op-

timization may not consistently yield the same quality
during test time, even with the same sampling parame-
ters.

2. Overfitting to Specific Instances: Later iterations may
overfit to the specific random seed or generation param-
eters used during optimization, reducing generalizability
to new generation instances.
Based on these results, we think T = 5 is indeed a choice

that balances performance gains with computational effi-
ciency for most applications. This finding is particularly
valuable for deployment scenarios where optimization time
is a concern.

F. Ablation study on computational budget

An important practical consideration for prompt optimiza-
tion is the computational budget, particularly the number of
image generations required. In our main experiments, we

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(a) DALL·E 3

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(b) Stable Diffusion 3.5

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(c) Playground v2.5

Figure 12. Radar graphs showing category improvements for complexity level k = 3 across all three models.

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(a) DALL·E 3

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(b) Stable Diffusion 3.5

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(c) Playground v2.5

Figure 13. Radar graphs showing category improvements for complexity level k = 4 across all three models.

compared the performance of optimized prompts (which re-
quired 1 initial image + 5 optimization iterations + 5 final
test generations) against baseline approaches that generated
5 images with the original prompt. This comparison, while
demonstrating the effectiveness of our framework, does not
account for the additional computational cost of the opti-
mization process itself. To address this concern, we conduct
a controlled computational budget experiment where both
the baseline and our method are limited to exactly 5 image
generations in total. For the baseline, we maintain the same
approach of generating 5 images with the original prompt
and selecting the best one. For our prompt optimization ap-
proach, we modify the procedure as follows:
1. We generate an initial image with the original prompt p0
2. We run 4 iterations of our optimization process, generat-

ing one image with each improved prompt p1, p2, p3, p4
3. We select the best image from these 5 generations

(p0, p1, p2, p3, p4) based on our evaluation metric

This approach maintains strict budget parity between the
methods, with both generating exactly 5 images. The key
difference is that our approach generates images from a se-
quence of progressively optimized prompts, while the base-
line generates multiple images from the same initial prompt.

As shown in Figures 24, 25, and 26, even with the
same computational budget, our prompt optimization ap-
proach consistently outperforms the baseline across all
complexity levels for all three models. This highlights an-
other practical application of prompt optimization frame-
work beyond benchmarking model capabilities: improving
resource-constrained generation. When users have a fixed
compute budget (e.g., limited to 5 DALL·E 3 API calls)
and specific image criteria to meet, our framework can ef-
ficiently allocate these resources by progressively updating
prompts based on previous generations, rather than repeat-
edly sampling from the same initial prompt.

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(a) DALL·E 3

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(b) Stable Diffusion 3.5

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(c) Playground v2.5

Figure 14. Radar graphs showing category improvements for complexity level k = 5 across all three models.

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(a) DALL·E 3

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(b) Stable Diffusion 3.5

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(c) Playground v2.5

Figure 15. Radar graphs showing category improvements for complexity level k = 6 across all three models.

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(a) DALL·E 3

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(b) Stable Diffusion 3.5

color

number

object

shape

size

spatial

style

texture

0.2 0.4 0.6 0.8 1.0

Without Optimization
With Optimization

(c) Playground v2.5

Figure 16. Radar graphs showing category improvements for complexity level k = 7 across all three models.

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Sc
or

e

Original Prompt
Transferred Prompt
Optimized Prompt

(a) Average Score

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
of

 5
 S

co
re

Original Prompt
Transferred Prompt
Optimized Prompt

(b) Best-of-5 Score

Figure 17. DALL·E 3 performance with SD 3.5 optimized prompts compared to original prompts and self-optimized prompts.

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Sc
or

e

Original Prompt
Transferred Prompt
Optimized Prompt

(a) Average Score

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
of

 5
 S

co
re

Original Prompt
Transferred Prompt
Optimized Prompt

(b) Best-of-5 Score

Figure 18. DALL·E 3 performance with Playground v2.5 optimized prompts compared to original prompts and self-optimized prompts.

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Sc
or

e

Original Prompt
Transferred Prompt
Optimized Prompt

(a) Average Score

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
of

 5
 S

co
re

Original Prompt
Transferred Prompt
Optimized Prompt

(b) Best-of-5 Score

Figure 19. Stable Diffusion 3.5 performance with DALL·E 3 optimized prompts compared to original prompts and self-optimized prompts.

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Sc
or

e

Original Prompt
Transferred Prompt
Optimized Prompt

(a) Average Score

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
of

 5
 S

co
re

Original Prompt
Transferred Prompt
Optimized Prompt

(b) Best-of-5 Score

Figure 20. Stable Diffusion 3.5 performance with Playground v2.5 optimized prompts compared to original prompts and self-optimized
prompts.

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Sc
or

e

Original Prompt
Transferred Prompt
Optimized Prompt

(a) Average Score

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
of

 5
 S

co
re

Original Prompt
Transferred Prompt
Optimized Prompt

(b) Best-of-5 Score

Figure 21. Playground v2.5 performance with DALL·E 3 optimized prompts compared to original prompts and self-optimized prompts.

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Sc
or

e

Original Prompt
Transferred Prompt
Optimized Prompt

(a) Average Score

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
of

 5
 S

co
re

Original Prompt
Transferred Prompt
Optimized Prompt

(b) Best-of-5 Score

Figure 22. Playground v2.5 performance with Stable Diffusion 3.5 optimized prompts compared to original prompts and self-optimized
prompts.

0 1 2 3 4 5 10 15
Number of Iterations

0.25

0.30

0.35

0.40

0.45

0.50

Av
er

ag
e

Sc
or

e

With Optimization

(a) Average Score

0 1 2 3 4 5 10 15
Number of Iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

B
es

t
of

 5
 S

co
re

With Optimization

(b) Best-of-5 Score

Figure 23. Performance comparison of different iteration numbers (T) in our prompt optimization framework on DALL·E 3 with fixed
complexity k = 4. The x-axis represents the number of iterations, while the y-axis shows scores.

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
of

 5
 S

co
re

Without Optimization
With Optimization

Figure 24. Comparison of DALL·E 3 performance under equal computational budget (5 images). The graph shows Best-of-5 Score for
the baseline approach (5 images with the original prompt) versus our approach (5 images with progressively optimized prompts) across
different complexity levels (k = 1 to k = 7).

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
of

 5
 S

co
re

Without Optimization
With Optimization

Figure 25. Comparison of Stable Diffusion 3.5 performance under equal computational budget (5 images). The graph shows Best-of-5
Score for the baseline approach (5 images with the original prompt) versus our approach (5 images with progressively optimized prompts)
across different complexity levels (k = 1 to k = 7).

1 2 3 4 5 6 7
Level Number (k)

0.0

0.2

0.4

0.6

0.8

1.0

B
es

t
of

 5
 S

co
re

Without Optimization
With Optimization

Figure 26. Comparison of Playground v2.5 performance under equal computational budget (5 images). The graph shows Best-of-5 Score
for the baseline approach (5 images with the original prompt) versus our approach (5 images with progressively optimized prompts) across
different complexity levels (k = 1 to k = 7).

	Introduction
	Method
	Experiments
	Setup
	Performance Analysis
	Category-wise Analysis
	Cross-Model Prompt Transferability

	Conclusion
	Acknowledgements
	Additional details on prompt optimization module
	Algorithm
	Analogy with traditional Gradient Descent
	Prompt update process
	Hyperparameters and example of optimizing ConceptMix
	Hyperparameters
	Example of optimizing ConceptMix

	Model-wise performance charts
	Category-wise capability analysis
	Heatmap analysis across models
	Radar graph analysis by complexity level

	Cross-model prompt transferability
	Model-specific transfer patterns

	Ablation study on optimization iteration count
	Ablation study on computational budget

