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Abstract

Generative transfer attacks craft adversarial examples by
training a perturbation generator on a white-box surro-
gate and deploying them against unknown black-box targets.
While existing generative methods demonstrate effective ad-
versarial transferability and enjoy inference-time efficiency,
they overlook the rich, model-shared semantic information
in the intermediate generator features, which is key to en-
hancing transferability. To address this, we propose a self-
distilling attack framework via mean teacher that effectively
exploits these previously under-explored generator features
and preserves the semantic structure within the generator
with student-teacher generator alignment via EMA updates.
We conduct comprehensive evaluations across four metrics
—Classification Accuracy, Attack Success Rate, Fooling Rate,
and our newly proposed Accidental Correction Rate— to
demonstrate consistent gains in both cross-model and cross-
domain adversarial transferability.

1. Introduction

Adversarial examples (AEs) have revealed critical vulnera-
bilities in deep vision models since [32] first observed that
small, human-imperceptible perturbations can cause misclas-
sification. Early white-box attacks—such as FGSM [56]
and its iterative variants—exploit gradient information di-
rectly, but inherently require full model access. To evaluate
real-world robustness, transfer-based (black-box) attacks
emerged, leveraging the phenomenon that adversarial per-
turbations crafted on one model often fool others. Notable
developments include Momentum Iterative [6], Diverse In-
puts [47], and Translation-Invariant [8] FGSM, which im-
prove transfer success via momentum, input transformations,
and scale invariance, respectively. More recently, generative
transfer attacks [1–3, 25–27, 29, 35, 45, 51–53, 58] train a
dedicated perturbation generator against a surrogate model,
enabling fast inference and high transfer rates without per-
example optimization.

While these generative approaches achieve efficient in-

Figure 1. Our self-distilling attack effectively exploits the genera-
tive model to craft adversarial examples with enhanced transferabil-
ity (▼) from the baselines ( ) across domains (a) and models (b).

ference and strong black-box transferability by aligning sur-
rogate outputs (e.g., intermediate features or logits), they
nonetheless neglect the potential of the intermediate fea-
tures within the generator. In a slightly different perspective
from these concurrent works [1, 12, 17, 18, 25–27, 29, 51–
53, 58] that primarily focus on manipulating the surrogate
features to disrupt the target model-invariant characteristics,
the intermediate feature activations of the generator do also
display semantically rich contextual cues of the object, such
as structures, contours, and textures, that can be used to-
wards adversarial transfer. Nonetheless, current generative
model-based transfer attacks underestimate the capacity of
the generator, thereby letting the generator features to deteri-
orate as training progresses, and thus limit the generalization
of the generated perturbation to unseen models and domains.

To address this gap, we propose a self-distilling mean
teacher framework that exploits under-explored generator
feature maps. By maintaining an exponentially averaged
“teacher” generator and aligning its intermediate activations
with those of the “student” generator, our approach preserves
semantic integrity to effectively guide noise generation on
these object-centric regions. We perform a fair evaluation



across four metrics to demonstrate consistent improvements
in both cross-model and cross-domain settings.
Contributions. We summarize our contributions as fol-
lows: (1) For the first time in generative model-based transfer
attacks, we leverage the semantic information embedded in
the perturbation generator, which is overlooked by previous
works, as a useful hint to enhance adversarial transferability,
(2) We introduce a self-distilling mean teacher framework to
better preserve and align the semantic structure of the object
during generator training, which is empirically observed to
be degraded over training iterations, and (3) We compre-
hensively evaluate the effectiveness of our attack using four
evaluation metrics, including our proposed Accidental Cor-
rection Rate (ACR), which shows consistent behavior with
the other metrics.

2. Background
2.1. Transferable Adversarial Attacks
Transferable adversarial attacks are a significant area of re-
search in machine learning, which exploits the phenomenon
where adversarial examples generated for one model can
also trigger mis-prediction on other models, even if they
are trained on different datasets or architectures. In a re-
cent decade, numerous iterative [5, 7, 16, 20, 21, 24, 37,
38, 40, 44, 48] methods have exploited this transferable na-
ture of adversarial examples to enable transfer attacks on
unknown models. However, high computational costs for
iterative optimization and limited transferability to target
models that are significantly distinct in architecture from
the source led to the development of highly transferable
and inference-time cost-efficient generative model-based at-
tacks [1, 25, 27, 29, 36, 51–53, 58].

2.2. Self-Knowledge Distillation
Self-knowledge distillation [13, 19, 19, 50, 54, 55, 57],
where a model teaches itself, has been known to improve gen-
eralization and robustness without external teachers. [10, 59]
first exploited iterative self- and peer-distillation. The Mean
Teacher [33] approach, adapted from semi-supervised learn-
ing, then constructs the teacher as an EMA of student
weights, using temporal ensembling to enforce consistency
in predictions or feature maps and to smooth high-frequency
noise under label-free supervision. In this approach, the
network can be better calibrated and more robust to domain
variations, thanks to enhanced domain invariance in the rep-
resentations, which is key to black-box generalization.

3. Self-Distillation via Mean Teacher
Preliminaries. The framework for generative model-based
transfer attacks comprises an adversarial perturbation gen-
erator Gθ(·), producing unconstrained adversarial examples
xadv from benign inputs x, which are then projected via a

Algorithm 1 Self-distilling Perturbation Generator Training

1: Input: Generator Gθ(·), training dataset Dtrain, a frozen sur-
rogate model Fk(·), perturbation projector P(·)

2: Ensure: Randomly initialize student Gθ(·), and initialize a
mean teacher Gθ′(·) with student weights θ

3: repeat
4: Randomly sample a mini-batch xi from train dataset Dtrain

5: Acquire student generator features s.t. gi,s ← Genc
θ (xi)

6: Acquire teacher generator features s.t. gi,t ← Genc
θ′ (xi)

7: Generate unbounded adversarial examples,
s.t. xadv

i ← Gdec
θ (gi,s)

8: Project xadv
i within the perturbation budget ϵ,

s.t. ||P(xadv
i )− xi||∞ ≤ ϵ

9: Forward pass xi and xadv
i through surrogate Fk(·)

to acquire f benign
i , f adv

i

10: Compute loss using f benign
i , f adv

i ,gi,s,gi,t:
L = Ladv + λdistil · Ldistill ▷ Eqs. 1,2

11: Update student Gθ(·) gradients via backpropagation
12: EMA update teacher with student, s.t. θ 7→ θ′

13: until Gθ(·) converges.
14: return Gθ′(·)

perturbation projector P(·) to satisfy ||P(xadv)− x||∞ ≤ ϵ.
To train Gθ(·) in a label-free manner in the untargeted at-
tack, we employ a white-box surrogate model to provide an
adversarial supervisory signal for generator updates via back-
propagation. The adversarial loss uses mid-layer surrogate
features Fk(·), which contain model-shared characteristics
that are crucial for adversarial transferability.
Preserving semantic integrity. With the recent works
seeking to center their perturbations around salient ob-
jects [4, 14, 43], or manipulate either input data space [39,
41] or intermediate-level perturbations from the surro-
gate [12, 17, 18, 25], object-focused feature-level divergence
are crucial for generating adversarial noise that is transfer-
able across black-box models. In the generative attack frame-
work likewise, we propose to explore the capacity of the
generator in the context of crafting transferable AEs to in-
duce more effective and transferable noise by preserving
the semantic structure in the early intermediate generative
features.

In pursuit of this goal, we employ Mean Teacher [33]
(with η = 0.999) to first build a noise-reduced reference to
the student generator features, encapsulating smoothed se-
mantics of an object without high-frequency noise. Then, we
strictly enforce the semantic structure consistency between
the early intermediate features of the teacher and the student
via our distillation loss formulated in Eq. 1. We base our
approach on our empirical observations of the trained gener-
ators from [26, 29, 58] where the early intermediate features
are relatively well preserved in the residual learning stage, a
stage in which adversarial noise is primarily generated. By
guiding the generated noise to lie on the semantic structure
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Figure 2. Overview of our self-distilling attack via mean teacher (SDA). Given an input image, x, the teacher generator Gθ′ maintains a
smoothed copy of the student Gθ , which is optimized by Ladv using the surrogate features and Ldistill using the intermediate features from
the student and the teacher (left), thereby further guiding noise to be generated around the semantic structure of the object as the perturbation
generator training progresses in the residual learning stage (right).

that is at least coarsely maintained by the mean teacher in the
early intermediate features, our method induces the added
noise to be generated acutely along the object-salient regions
in a more structured manner in the residual learning stage.

Ldistill =
∑
j∈L

max

(
0, τ −

gj⊤
i,t g

j
i,s

∥gj
i,t∥2 ∥g

j
i,s∥2

)
, (1)

where L, τ,gi,s,gi,t represent the set of indices of intermedi-
ate residual block to distill, similarity threshold (0.6), student
and teacher generator features at layer j, respectively. We
set the intermediate layer set L = {1, 2} for distilling the
first and second residual block features, as shown in blue in
Fig. 2. In sum, the total loss objective then becomes:

L = Ladv + λdistill · Ldistill, (2)

where λdistill is a weight term for Ldistill, and Ladv is the sur-
rogate loss. We use Ladv = cos_sim(Fk(x),Fk(x

adv)) at
mid-layer k = 16 of VGG-16 surrogate for the baseline [58].

4. Experiments
Attack settings. We evaluate adversarial transfer under
two black-box protocols. In the cross-model setting, per-
turbations are crafted on surrogate models trained with the
same data distribution (ImageNet-1K [28]) and then tested
on unseen target architectures. In the cross-domain setting,
adversarial examples are to generalize across domain shifts
without access to any target-distribution samples.
Datasets. We train the perturbation generator using data
from ImageNet-1K [28]. Following [1, 26, 27, 29, 51–
53, 58], we train the generator on the ImageNet-1K [28]
containing 1.2 M natural images and evaluate on CUB-200-
2011 [34], Stanford Cars [15], FGVC Aircraft [22] for fine-
grained cross-domain settings, and various ImageNet-1K
pre-trained model architectures for cross-model.

Victim models. For cross-model evaluation, we employ
ImageNet-1K pre-trained classification models of various
network architectures with their publicly available model
weights. We source the pre-trained models from TorchVi-
sion [23] and Timm [42] libraries. Compared to previous
approaches [29, 52, 53] demonstrating cross-model archi-
tecture transferability, we expand the evaluation to a wider
scope of target model architectures for enhanced architecture-
agnostic transferability.
Baselines. We compare our attacks against the state-of-the-
art baselines that rely on the same ResNet generator to craft
adversarial examples, i.e. LTP [29], BIA [58], GAMA [1],
FACL-Attack [51, 52], and PDCL-Attack [53].
Against robust models. We also test our method on at-
tacking robust models, i.e. adversarially trained models with
Inception-V3 [16], ViT [9] and ConvNeXt [31], and robust
input processing methods such as JPEG (75%) [11], bit re-
duction (BDR; 4-bit) [49] and randomization (R&P) [46] in
Table 3.
Evaluation metrics. We evaluate the transferability of
adversarial attacks across model architecture and domain
shifts. Specifically, we comprehensively assess the attack
effectiveness on top-1 accuracy (Acc.) and Fooling Rate
(FR) on all test data, and Attack Success Rate (ASR) on
all test samples originally classified correctly by the target
model. Additionally, we newly propose to assess our attack
by the Accidental Correction Rate (ACR) on all test samples
originally classified incorrectly by the target model.
Main results. We evaluate our method in both cross-model
(Table 1) and cross-domain (Table 2) scenarios, achieving
notable transferability gains of 1.98%p and 3.97%p in accu-
racy, respectively, with consistent improvements across all
other metrics. The ACR shows the smallest relative gain due
to the inherently low prevalence of accidentally corrected
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Figure 3. Qualitative results. Our self-distilling mean teacher successfully focuses perturbations particularly on the semantically meaningful
regions, thereby fooling the victim classifier. Left: benign input image (a), generated perturbation (normalized for visual purposes; b),
unbounded adversarial image (benign with perturbation; c), and ℓ∞ ≤ 10-bounded adversarial image (d), on CUB-200-2011 [34], Stanford
Cars [15], FGVC Aircraft [22], and ImageNet-1K [28] domains. Right: We emphasize that our method induces Grad-CAM [30] to focus on
drastically different regions in our adversarial examples compared to both the benign image and the adversarial examples crafted by the
baseline [58]. Moreover, our approach noticeably reduces the high activation regions observed in the benign and baseline cases, enhancing
the transferability of our adversarial perturbations.

Table 1. Quantitative results in the cross-model setting. We trained our perturbation generator against VGG-16 surrogate on ImageNet-1K
domain, and evaluated on black-box models, given a perturbation budget of ℓ∞ ≤ 10. We report the black-box average denoted as Bb. Avg,
with better results in boldface. Please zoom in to see the results for each method.

ConvNets Transformers Mixer Bb.
Avg.Method Metric vgg16vgg19 r50 r152 d121 d169 inc-v3wrn50regnetymobile mnas squeezeshuffleefficientconvnext-bresnext-b vit-b vit-l swin-b/16deit-b pvt maxvit-bbeit-befficientvit hrnet mobilevitcait-s24davit-b mlp-b mlp-l conv-bconv-l

Clean Acc. (%) ↓ 70.15 70.95 74.6077.3374.2275.74 76.19 77.29 77.95 69.96 66.5 61.96 69.64 67.91 82.12 76.64 77.2477.56 79.78 82.27 65.99 83.07 83.95 69.97 63.65 77.26 81.96 81.96 72.26 69.77 78.04 79.7 75.08

Baseline [58]

Acc. (%) ↓ 1.56 3.60 25.3642.9826.9732.35 41.20 33.31 31.30 10.04 34.30 10.48 30.14 60.06 48.04 29.83 69.3170.97 45.68 74.60 29.86 62.51 78.39 55.35 26.23 30.42 73.00 55.94 61.12 57.72 58.21 57.39 45.44
ASR (%) ↑ 98.02 95.42 67.9846.9265.6559.49 49.05 59.20 61.89 86.65 51.41 83.09 58.30 27.33 43.41 62.94 13.5011.84 44.58 11.77 57.38 26.51 9.20 24.91 61.54 62.54 13.27 34.00 22.60 23.21 28.39 30.97 43.32
FR (%) ↑ 98.26 96.03 72.1352.7570.5364.71 55.38 64.08 66.25 88.83 59.93 86.60 65.84 34.51 48.16 67.69 21.0319.26 50.09 17.71 65.65 31.84 13.63 35.13 67.85 67.18 18.89 39.89 31.95 36.72 35.46 37.48 49.57

ACR (%) ↓ 0.58 1.20 5.75 8.48 5.64 6.83 9.86 7.82 7.23 2.35 5.95 2.33 6.01 12.27 8.41 6.11 10.9811.56 7.25 11.37 5.10 8.65 13.48 9.36 4.83 6.52 10.63 10.26 11.62 13.70 10.57 11.68 8.42

w/ Ours

Acc. (%) ↓ 1.59 3.05 23.1240.9825.6632.35 37.44 33.24 29.71 9.18 31.02 7.63 26.01 59.66 45.34 28.89 68.6470.72 33.69 73.26 30.97 60.92 77.99 54.27 23.70 28.89 72.80 51.97 59.62 56.78 53.89 55.44 43.46
ASR (%) ↑ 98.00 96.17 70.8149.3867.2959.44 53.60 59.34 63.85 87.81 56.08 87.89 64.08 27.90 46.55 64.16 14.3412.21 58.88 13.19 56.13 28.50 9.73 26.50 65.21 64.52 13.54 38.63 24.66 24.42 33.66 33.34 45.85
FR (%) ↑ 98.26 96.7 74.7055.0372.0164.65 59.58 64.17 67.98 89.77 63.70 90.29 70.59 35.07 50.92 68.75 21.8919.49 63.32 19.29 64.61 33.88 14.25 36.84 71.17 68.97 19.14 44.28 33.89 37.84 40.51 39.71 51.88

ACR (%) ↓ 0.63 1.13 5.30 8.12 5.36 6.74 8.77 8.02 6.96 2.16 5.41 1.94 5.34 12.50 7.72 6.07 10.9011.69 4.37 10.37 5.93 8.99 13.78 9.46 4.29 6.50 10.75 9.24 11.78 13.37 9.65 11.40 8.10

Table 2. Quantitative results in the cross-domain setting. We
compare the attack performance on fine-grained domains: CUB-
200, Stanford Cars, and FGVC Aircraft (better results in boldface).

CUB-200-2011 Stanford Cars FGVC Aircraft
Method Metric res50 se-net se-res101 res50 se-net se-res101 res50 se-net se-res101 Avg.
Clean Acc. (%) ↓ 87.35 86.61 86.56 94.35 93.66 92.97 92.23 92.08 91.90 90.85

Baseline [58]

Acc. (%) ↓ 32.74 52.99 58.04 39.61 69.90 70.17 28.92 60.31 46.92 51.07
ASR (%) ↑ 63.16 40.54 34.69 58.94 26.47 26.28 69.13 35.37 50.05 44.96
FR (%) ↑ 66.00 45.24 39.54 59.87 28.58 28.52 70.93 38.64 52.60 47.76

ACR (%) ↓ 4.36 10.73 10.54 10.39 15.73 15.75 6.11 12.08 9.52 10.58

w/ Ours

Acc. (%) ↓ 35.92 49.48 58.32 27.62 66.30 65.09 20.10 56.80 44.31 47.10
ASR (%) ↑ 59.59 44.77 34.27 71.13 29.99 31.10 78.61 39.21 52.50 49.02
FR (%) ↑ 62.67 49.09 39.30 71.76 32.10 33.14 79.75 42.30 54.79 51.66

ACR (%) ↓ 4.90 11.65 10.54 7.14 14.04 14.69 4.96 10.57 8.46 9.66

Table 3. Attack performance with our method against defenses and
input processing methods (better results in boldface).

Method Metric Adv.Inc-V3 Adv.ViT Adv.ConvNeXt JPEG BDR R&P Avg.

Clean Acc. ↓ 76.33 48.82 58.44 74.68 74.68 76.58 68.26

Baseline [58]

Acc. (%) ↓ 68.54 45.64 53.88 63.49 47.82 44.78 54.03
ASR (%) ↑ 14.95 11.72 10.26 20.24 40.76 44.59 23.75
FR (%) ↑ 24.02 25.48 19.40 28.09 48.06 51.60 32.78

ACR (%) ↓ 15.30 4.96 3.46 11.45 11.30 10.56 9.51

w/ Ours

Acc. (%) ↓ 67.92 45.33 53.62 60.83 44.07 39.01 51.80
ASR (%) ↑ 15.75 11.95 10.65 23.74 45.37 51.63 26.52
FR (%) ↑ 24.83 25.31 19.60 31.61 52.22 57.86 35.28

ACR (%) ↓ 15.23 4.57 3.38 11.48 10.29 9.08 9.01

samples, limiting room for improvement. Against the ro-
bust defenses (Table 3), our approach uniformly surpasses
the baseline. Qualitative comparisons (Fig. 3) and quanti-
tative perceptual evaluations (Table 4) further confirm that

Table 4. Comparison of accuracy and image perceptual quality
of AEs, with ℓ∞ ≤ 10. Our method further improves the black-
box accuracy across both domains and models, and the generated
adversarial examples improve pixel-level similarity by a slight
margin in parentheses while maintaining the structural integrity (–).

Method Cross-domain Acc. ↓ Cross-model Acc. ↓ PSNR ↑ SSIM ↑ MS-SSIM ↑
LTP [29] 49.91 47.40 29.11 0.76 0.94
w/ Ours 44.51 41.23 29.26 (+0.15) 0.77 (+0.01) 0.95 (+0.01)

BIA [58] 51.07 45.44 28.08 0.75 0.94
w/ Ours 47.10 43.46 28.76 (+0.68) 0.75 (–) 0.94 (–)

GAMA [1] 48.56 44.53 28.62 0.74 0.94
w/ Ours 46.09 43.35 28.69 (+0.07) 0.74 (–) 0.94 (–)

FACL [52] 44.05 41.20 28.61 0.74 0.93
w/ Ours 41.78 41.01 28.67 (+0.05) 0.74 (–) 0.93 (–)

PDCL [53] 43.91 42.81 28.68 0.74 0.94
w/ Ours 43.06 42.69 28.70 (+0.02) 0.74 (–) 0.94 (–)

our adversarial examples exhibit enhanced imperceptibility,
fulfilling a key requirement for practical attack efficacy.

5. Conclusion
In this paper, we have proposed a self-distillation attack
framework that leverages intermediate generator representa-
tions in mean teacher to significantly improve cross-model
and domain transferability. By moving beyond the conven-
tional surrogate space manipulation approaches, we hope
our novel transferability-enhancing perspective using the
generator sheds further light on advancing the attack.
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