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Abstract

We draw a connection between representation learning and
efficient modelling in the diffusion domain. Particularly we
relate the representation-learning capabilities of diffusion
autoencoders (DAs) and efficient learning of diffusion mod-
els (DMs) that learn their forward process. DAs, through
their input-dependent latent variables, can to varying ex-
tents be used for representation learning, controllable gen-
eration, and interpolation. However, their generative per-
formance relies heavily on how well such a variable can
be modelled and subsequently sampled from. DMs with
learnable forward processes on the other hand are effec-
tive at adjusting the noise scales for the forward process in
an input-dependent manner, but this means additional con-
straints derived from the terminal conditions of diffusion it-
self. We develop DDPM-BP, a diffusion model that employs
a binary input-dependent variable as a bottleneck to guide
the denoising process, satisfying the representation learn-
ing capabilities of DAs—evaluated on downstream tasks—
as well as efficient learning and generation with fewer de-
noising steps compared to standard DMs.

1. Introduction
Diffusion models (DMs) are powerful generative frame-
works, with Denoising Diffusion Probabilistic Models
(DDPMs) [4] and score-based models [18] as foundations.
Despite their generative capabilities, these models are of-
ten computationally expensive due to the large number of
steps required. To address this, DDIM [17] employs non-
Markovian noising for faster sampling, while further refine-
ments improved sample quality and robustness [9, 11, 12].

While most DMs assume a fixed forward noising pro-
cess and focus on learning the reverse denoising step, recent
work has explored addtionally learning the forward noising
process itself [1, 10], leading to improved log-likelihoods.
These methods allow for more flexible generative trajecto-
ries and can reduce generation costs.

Meanwhile, recent research has explored use of DMs
in representation learning, focusing on either extracting

features from pretrained models [22–27], or using Diffu-
sion Autoencoders (DAs) for unsupervised representation
learning [13, 14, 21]. DAs leverage an additional input-
dependent variable z to guide the denoising process, which
enables reconstruction, controllable generation and interpo-
lations. This not only facilitates representation learning but
also reduces the number of denoising steps required for gen-
eration. However, the extent of this efficiency gain depends
on how well that z can be sampled during inference.

We argue that there is a strong connection between DAs
and DMs with learned forward processes. In particular,
when the latent variable z can be effectively sampled, the
principles behind DAs can be leveraged to boost the perfor-
mance of standard unconditional DMs, much like the ben-
efits gained from learning the forward process. Our contri-
butions are as follows:
1. We outline the connection between Diffusion Autoen-

coders and DMs with a learnable forward process.
2. We propose DDPM-BP to leverage an additional input-

dependent binary variable z to guide both the denoising
and noising processes implicitly.

3. We show that DDPM-BP requires fewer denoising steps
to produce high-quality samples and learns meaningful
representations, without relying on additional loss terms,
constraints on z, or auxiliary samplers.

2. Related work
Diffusion Models with learned forward process: DMs
gradually corrupt data into noise through a forward pro-
cess and learn to reverse this corruption. The origi-
nal DDPM framework [4] and score-based models [18]
established this setup with a Markovian noising process
q(xt|xt−1, t). It was later extended by non-Markovian vari-
ants [12, 17] where the input x0 influences the noising pro-
cess q(xt|xt−1, x0), resulting in fewer steps required for in-
ference. These models assume a fixed forward process and
focus solely on learning the reverse denoising process.

Recent work explores parameterizing and learning the
forward process as well. VDMs [5], NFDMs [1] and Diff-
Enc [10] learn both the forward process qθ(xt|x0, t) and the
reverse process p(x0|xt), and have been shown to achieve



better log-likelihood, potentially requiring fewer steps for
denoising. Other work explore conditional diffusion, and
use of data-dependent priors [3] or shifts [28]. This direc-
tion parallels the motivations behind hierarchical variational
autoencoders (VAEs) [7, 19], which introduce multi-level
latent structures to better capture data distributions by learn-
ing intermediate representations and more flexible priors.
Diffusion Autoencoders (DAs): These combine the ben-
efits of autoencoding and diffusion modeling with a latent
variable that guides denoising, enabling reconstruction.

DiffAE [14] employs an encoder z = Encϕ(x0) whose
output is used at each step of denoising alongside xt and
t. For unconditional generation, a separate DDIM model is
trained to approximate the distribution of z.

InfoDiffusion [21], based on InfoVAE [29], uses a proba-
bilistic encoder to maximise MI and align the posterior with
a discrete prior of z. For inference, z is sampled from the
prior, but an unconditional DDPM is used for the first half
of the denoising steps, or DDIM is employed as in DiffAE.

DiffuseVAE [13] combines VAE and DDPM in a two-
stage training process. First, a VAE learns latent codes and
reconstructions; then, a DDPM denoises p(x0|xt, x̂0), with
x̂0 as the VAE reconstruction of x0. For inference, latent
codes are sampled from a fitted density estimator.

All these DAs can perform reconstruction, controllable
generation, and interpolation. Furthermore, they often re-
quire fewer denoising steps compared to standard DMs.
We draw a connection to techniques like DDIM’s non-
Markovian forward process and models that learn the nois-
ing trajectory, both of which result in similar improvements.
We note that DAs learn the forward process implicitly.

Nevertheless, their generative performance heavily de-
pends on auxiliary samplers for z, as sampling directly from
priors is either impossible or inefficient. We argue that if z
were a variable that could be freely sampled, it would serve
as a powerful signal for generation, enabling more efficient
(unconditional) generation with fewer denoising steps.

We propose a Diffusion Autoencoder that imposes no ad-
ditional constraints on z, allowing the model to learn a use-
ful latent variable that simplifies denoising. By defining z
as a compact discrete bottleneck, we constrain the posterior
to match the prior, enabling direct sampling. This results in
a diffusion model that generates high-quality samples effi-
ciently, requiring fewer steps and no auxiliary samplers.

3. Method
Forward diffusion: Given data x0 ∼ q(x0), we define a
learnable forward noising process qϕ to generate x1...T as

qϕ(xt | x0, t) = qϕ(xt | x̂t, z) (1)

where z ∼ qϕ(z | x0) is a latent variable modeled by a
neural network, and x̂t follows a standard forward diffusion

Table 1. FID score comparison of sampling strategies for DDPM-
BP on CIFAR-10, computed with 10K generated samples.

T z ∼ • |z|
16 32 64 128

10
qϕ(z|x0) 11.85 10.34 9.16 9.16
Bernoulli 11.88 10.48 15.55 22.20
PixelSNAIL 11.70 10.97 11.33 14.98

100
qϕ(z|x0) 4.56 4.96 4.61 4.46
Bernoulli 4.79 5.33 9.33 17.23
PixelSNAIL 4.53 5.21 6.04 9.54

process [4]. We define the latent space as z ∈ {0, 1}|z|,
where each component zi follows a Bernoulli distribution.
Reverse generative model: The generative model re-
verses the forward process, resulting in a hierarchical gen-
erative framework

p(x0) =

∫
x

p(xT )

T∏
t=1

pθ(xt−1|xt) (2)

=

∫
z

p(z)

∫
x̂

p(x̂T )

T∏
t=1

pθ(x̂t−1|x̂t, z) (3)

where the denoising step is modeled as

pθ(x̂t−1|x̂t, z) = N (x̂t−1;µθ(x̂t, t, z),Σθ(x̂t, t, z)) (4)

with µθ and Σθ learned by a neural network. Equation (2)
corresponds to DM with learned forward with diffusion pro-
cess xt, while Equation (3) corresponds to Diffusion Au-
toencoder with diffusion process x̂t and latent variable z.
Training: Following [9], we train the network to pre-
dict the added noise by optimizing a combination of mean
squared error and the variational lower bound. We set the
size of z to be small so it acts as a bottleneck and enables ef-
ficient sampling during inference. No additional loss terms
or constraints are applied to the posterior qϕ(z | x0).
For further details, please refer to code available at https:
//github.com/exlab-research/dmz.

4. Experiments
We evaluate our model, DDPM-BP, and compare it against
models with a learnable forward diffusion process and
Diffusion Autoencoders. Experiments are conducted on
CIFAR-10 [6] and CelebA-64 [8], following prior work.

Our models are developed on prior improvements to
DDPMs [9, 11]. The encoders pϕ(z | x0) are defined as
a sequence of Conv + BatchNorm + LeakyReLU blocks,
followed by Gumbel-Softmax, and are trained jointly with
the denoising UNets. See code for further details.

4.1. Sampling z ablation
We explore several strategies for sampling vectors z dur-
ing inference—critical for generating high-quality outputs

https://github.com/exlab-research/dmz
https://github.com/exlab-research/dmz


Table 2. Comparison of conditioning strategies for incorporating
the additional variable z into the denoising UNet on CIFAR-10.

conditioning
on z

train
iter.

NLL
(BDP) Acc FID@10K

Bernoulli qϕ(z|x0)

along with t 400K 3.18 33.4 6.25 4.44
via Cross-Att. 250K 3.18 39.5 4.79 4.56

as shown in prior DA work. For example, DiffAE [14]
and InfoDiffusion [21] utilise an auxiliary DDIM process
to model the distribution over z. As an alternative, InfoDif-
fusion decodes initial steps xT ...T/2 using an unconditional
version of the denoising network, and then samples z from
a prior for the remaining steps xT/2...0. Note that, despite
the prior being explicitly constrained during training, it can-
not be efficiently utilised for sampling at all inference steps.
DiffuseVAE [13] also employs auxiliary samplers and fits a
density estimator—a Gaussian Mixture Model (GMM)—to
the VAE latent space to enable sampling during inference.
We consider the following three methods:
1. Sampling z from data: For reference, we compute FID

scores for z ∼ qϕ(z | x0), where x0 ∼ D is taken from
data. We denote this strategy as z ∼ qϕ(z|x0).

2. Bernoulli Prior: We sample each latent component in-
dependently as zi ∼ Bernoulli(p = 0.5).

3. Autoregressive Prior (PixelSNAIL): Inspired by prior
work on discrete latent models [15, 20], we fit a Pixel-
SNAIL model [2] over latent codes to enable sampling.
We refer to this sampling method as z ∼ PixelSNAIL.
Larger PixelSNAIL models closely match the poste-

rior—or even memorise the dataset—achieving FID scores
near those from dataset latents. To ensure a fair comparison,
our models are limited to under 600K parameters, based on
a grid search that found hyperparameters providing an opti-
mal balance between performance and model size.

FID scores for all strategies are shown in Table 1.
Sampling from PixelSNAIL generally yields better re-
sults, particularly in higher-dimensional settings. In lower-
dimensional latent spaces, the model better leverages the
prior, and sampling directly from it yields strong perfor-
mance without auxiliary samplers. Therefore, we adopt
low-dimensional z, optimizing for direct sampling.

4.2. Denoising network architecture ablation
Both DiffAE [14] and InfoDiffusion [21] condition the de-
noising UNet on z, along with timestep t, in each block. We
explore an alternative approach that replaces standard atten-
tion with cross-attention and passing z exclusively through
these. This is intended to improve robustness when sam-
pling z from outside the training distribution. A comparison
between standard conditioning (using z and t together) and
cross-attention using DDPM-BP is shown in Table 2.

The model with cross-attention conditioning trains
faster, achieves similar NLL, performs better on the down-

(a) CIFAR-10

(b) CelebA-64

Figure 1. Comparison of training curves for DDPM-BP and the
baseline DDPM. Dashed lines correspond to results for T = 10,
while solid lines indicate T = 100.

stream task (Acc), and is more robust with Bernoulli sam-
pling (FID) than the baseline, hence the strategy we adopt.

4.3. DDPM-BP compared to DDPM
Figure 1 compares training curves of DDPM-BP and the
baseline DDPM. As expected, DDPM-BP achieves lower
negative log-likelihood (NLL), measured in bits per dimen-
sion (BPD), as the latent variable z provides additional con-
text for estimating x0. For CIFAR-10, it converges faster,
while for CelebA, it achieves slightly better FID scores.

Interestingly, we see that for T = 10, FID scores worsen
over time, particularly for the baseline DDPM. This appears
to stem from reduced sample diversity and poor color fi-
delity, as the generated images tend have a grayish tone.
This is notably less prominent in DDPM-BP, suggesting
that z helps guide the denoising process more effectively,
preserving sample quality even with fewer timesteps.

Moreover, we observe that a lower NLL does not nec-
essarily correspond to better FID scores, highlighting the
often-misaligned objectives of likelihood maximization and
perceptual sample quality. DMs typically prioritise reduc-
ing the number of timesteps T and optimizing NLL or
FID—but rarely both. Our work aligns with prior efforts to
improve sampling quality and efficiency, not optimize NLL.

4.4. Sampling quality
We assess sample quality using FID scores [16], measuring
similarity between the dataset and 10K generated samples.
Following prior work [13, 14], we evaluate across varying
numbers of inference steps T . Examples of generated im-
ages are in Supplementary Material 6. Results are presented
in Table 3.

Among all models, VDM achieves the best FID score on
CIFAR-10, but requires 1000 denoising steps and evalua-



Table 3. FID scores comparison. All DAs except DiffAE use
DDPMs, since DiffAE results are only available for DDIM set-
ting. Models marked ∗ used 50K samples; all others used 10K.

T CIFAR-10 CelebA-64

DDPM-BP

10 11.88 15.98
20 6.92 9.17
50 5.18 5.13

100 4.79 3.96

DiffAE∗ [14]

10 — 12.92
20 — 10.18
50 — 7.05

100 — 5.30

InfoDiffusion [21] 1000 31.5 21.2

DiffuseVAE [13]

10 34.22 25.79
25 17.36 13.89
50 11.00 9.09

100 8.28 7.15

VDM∗ [5] 1000 4.0 —

DiffEnc [10] 1000 14.6 —

NDFM∗ [1]
2 12.44 —
4 7.76 —

12 5.2 —

tion over 50K samples. For reference, DDPM-BP achieves
an FID score of 2.83 on CIFAR-10 for T = 100 when using
50K samples instead of 10K. Note that [5, 10] emphasize
their focus on optimizing NLL, rather than improving FID
scores or reducing the number of inference steps. To our
knowledge, [1] is the only work that attempts to optimise
for both NLL and FID. While the results reflect this dual op-
timization, the method is computationally expensive and in-
troduces constraints that limit scalability and integration of
other improvements proposed in DMs research [9, 11, 17].

DDPM-BP achieves the best overall results among DAs.
Notably, while other models rely on auxiliary samplers to
generate latent variables z, we sample z directly from the
prior. Additionally, we obtain competitive performance us-
ing fewer denoising steps than other approaches.

4.5. Quality of learned representations
We follow the evaluation framework proposed in [21], train-
ing logistic regression classifiers using latents z and corre-
sponding labels, and measuring classification performance.
We investigate the impact of the size of z on classifica-
tion scores, as larger latent codes provide more information,
making predictions easier. This analysis also helps verify
whether the encoder pϕ(z|x0) learns meaningful represen-
tations. However, as discussed in Section 4.1, we generally
opt for smaller |z| for better generative performance. Our
results as well as results from [21] are shown in Table 4.

Overall, DDPM-BP yields the best results. Unlike Dif-
fAE, our method learns discrete latent representations, and
unlike InfoDiffusion, it does so without relying on auxiliary
loss terms to enforce specific structure in the latent space.

(a) CIFAR-10; from top to bottom |z| = 16, 32, 64, 128.

(b) CelebA-64; from top to bottom |z| = 64, 128, 256.

Figure 2. Samples from DDPM-BPs. Each row contains samples
from a different model when using one code z ∼ qϕ(z|x0).
Table 4. Assessment of learned representation quality based on
performance in downstream classification tasks.

CIFAR-10 CelebA-64
|z| Acc |z| AUROC

DiffAE 32 39.5 32 79.9
InfoDiffusion 32 41.2 32 84.8

DDPM-BP
16 39.5 64 79.4
32 41.5 128 80.6
64 45.6 256 81.0

Figure 2 shows examples of images generated using a
single code z ∼ qϕ(z|x0). As |z| increases, images become
more consistent and resemble the reconstruction. For more,
refer to Supplementary Material 6.

5. Conclusion

We presented DDPM-BP, a generative model that lever-
ages an additional input-dependent binary latent variable to
guide the denoising process. We show connections to ef-
ficient learning of DMs by learning the forward process,
and conduct experiments and ablations to validate model
choices. DDPM-BP requires fewer denoising steps during
generation to produce high-quality samples and the learned
representations capture meaningful information. Our find-
ings suggest that the use of additional, input-dependent pri-
ors provides a compelling and efficient alternative to tradi-
tional diffusion modeling.
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Supplementary Material

6. Samples
Figure 3 shows examples of images generated with DDPM-
BP for different number of denoising steps T . We use
DDPM-BP with |z| = 16 and |z| = 64 for CIFAR-10 and
CelebA-64, respectively.

In Figures 4 and 5, we showcase examples of images
generated by DDPM-BP to demonstrate both its genera-
tive capabilities and the learned representations of z. These
samples illustrate how varying the size of z impacts learned
representations and the model’s ability to reconstruct x0

from z. This provides insight into how DDPM-BP learns
to use the latent space z depending on |z|.

In Figure 6, we explore latent space z by generating im-
ages using discrete interpolations. For that, we use DDPM-
BP with |z| = 128 and |z| = 256 for CIFAR-10 and
CelebA-64, respectively.



(a) CIFAR-10

(b) CelebA-64

Figure 3. Images generated using varying number of denoising steps T . Each column corresponds to one latent code z ∼ Bernoulli.
Subsequent rows correspond to T = 1000, 500, 200, 100, 50, 20, 10, 5.



(a) |z| = 16 (b) |z| = 32

(c) |z| = 64 (d) |z| = 128

Figure 4. Comparison of CIFAR-10 representations learned by DDPM-BP with varying sizes of z. Images were generated using four
different codes z ∼ qϕ(z | x0), x0 ∼ D, and five different xT ∼ N (0, I).



(a) |z| = 64 (b) |z| = 128

(c) |z| = 256

Figure 5. Comparison of CelebA-64 representations learned by DDPM-BP with varying sizes of z. Images were generated using four
different codes z ∼ qϕ(z | x0), x0 ∼ D, and five different xT ∼ N (0, I).



(a) CIFAR-10

(b) CelebA-64

Figure 6. Images generated using discrete interpolations between two codes za and zb, where za ∼ qϕ(z|xa
0), z

b ∼ qϕ(z|xb
0), xa

0 , x
b
0 ∼ D,

and xT ∼ N(0, I). Original images xa
0 , x

b
0 are shown in the first two columns.
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