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Abstract

We introduce Flow-Optimizer, a novel framework that
leverages the unique oscillatory behavior observed in recti-
fied flow-based models to enable high-quality image inter-
polation and editing. While existing methods often struggle
to preserve semantics and structure, our approach reveals
that latent oscillations form semantically coherent clusters.
These clusters can be further optimized for smooth and con-
trollable transformations, making it ideal for tasks such as
structure-preserving image interpolation. This insight pro-
vides a new perspective on the latent space of flow models
and enables practical techniques for structure-aware, inter-
pretable image editing. Extensive Experiments show clear
improvements in visual quality, consistency, and efficiency
over prior methods.

1. Introduction

Flow-based models provide a complementary generative
modeling approach that addresses some of these limita-
tions. Unlike diffusion models, flow-based models param-
eterize an invertible, deterministic transformation between
a simple latent distribution (often Gaussian) and complex
data distributions, enabling efficient and exact likelihood
evaluation and sampling. By harnessing invertible neu-
ral networks, flow models facilitate direct manipulation of
latent variables, thus offering more explicit control over
generated content. Recent research integrating flow-based
frameworks into diffusion-inspired pipelines has demon-
strated improved efficiency and controllability, highlighting
promising directions for enhanced generative modeling in
images, videos, and 3D structures.

In this paper, we investigate the problem of using
large pre-trained flow model for image interpolation, where
source and target images share a similar layout (e.g., depth-
or mask-aligned), is a challenging yet essential task in com-
puter vision. Unlike traditional morphing methods that han-
dle structural differences, we explore an orthogonal direc-
tion by leveraging the refined reverse stages of flow-based

generative models to achieve smooth interpolation, focus-
ing on fine-grained details such as color, style, and texture
under a consistent structural layout.

Our approach reformulates interpolation as an optimiza-
tion problem in the latent space of a rectified flow model[1,
4, 5]. Building on recent advances in oscillation inver-
sion techniques[9], we propose a one-step inversion strat-
egy that reveals a local, optimizable latent space. Rather
than yielding a single deterministic solution[7], we found
that the fixed-point iteration in oscillation inversion pro-
duces symmetric latent clusters. By averaging the latent
codes within these clusters, we obtain a stable initialization
that effectively captures the integrated posterior mass in a
local neighborhood, providing the optimal starting point for
subsequent optimization.

After identifying this stable latent initialization, we fur-
ther explore how it can guide downstream transformations.
We observe that the latent space around this initialization
exhibits local smoothness—allowing us to perturb the re-
construction target without disrupting optimization stabil-
ity. This insight enables us to extend beyond point-wise re-
construction toward continuous interpolation. Specifically,
we formulate interpolation as a sequence of latent-space op-
timization steps, where the target is gradually perturbed. At
each stage, we reinitialize the process using the averaged
latent from the previous step, ensuring that the path remains
within a stable region. This iterative strategy prevents la-
tent drift and enables smooth transitions across fine-grained
attributes while preserving structure and identity. Our con-
tributions are summarized as follows:

• We propose a novel optimization framework that utilizes
a one-step inversion derived from oscillation inversion
methods to obtain a local optimizable latent space.

• We investigate leveraging refined reverse stages of flow-
based models for smooth interpolation in settings where
images share similar structural layouts.

• We design an iterative mechanism that ensures a smooth
and stable optimization trajectory from source to target,
effectively mitigating latent deterioration.
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Figure 1. Flow-Optimizer leverages oscillation inversion to generate symmetric clusters (blue dots) from fixed-point iterations. These
clusters naturally separate into odd and even iterations, allowing us to compute average latent points (red dots). We subsequently obtain
optimized points (orange) based on this initialization. Using Tweedie’s estimation to approximate ODE paths, we iteratively transform the
source image through a sequence of smooth transitions, gradually approaching the target with high-quality intermediary results.

2. Method

2.1. Preliminary: Rectified Flow

Rectified Flow [1, 4, 5] is a generative approach that enables
smooth distribution transitions via ODEs. Given Z0 ∼ π0

and Z1 ∼ π1, the transition follows a linear interpolation
Zt = (1−t)Z0+tZ1 for t ∈ [0, 1]. To preserve the marginal
distribution of Zt, the following ODE is used:

dZt

dt
= v(Zt, t), (1)

where v represents the velocity field. In practice, v is pa-
rameterized by a neural network vθ(Zt, t) and optimized
via stochastic coupling (Z0,Z1) ∼ (π0, π1) and t ∼
Uniform([0, 1]):

vθ(Zt, t) = argmin
θ

E
[∥∥(Z1 − Z0)− v(Zt, t)

∥∥2] (2)

where Zt = (1− t)Z0 + tZ1.

2.2. Problem Definition

Following [5], the ODE path zt preserves the marginal dis-
tribution from Z0 ∼ π0, typically a standard Gaussian.
While many ODE inversion methods seek an exact solu-
tion, our goal is to identify a locally optimizable latent space
rather than a precise inversion. We propose that integrated
posterior mass offers a more robust initialization than point-
wise posterior mass:

z∗ti = argmax
zti

∫
N (zti )

p(z′ | y) dz′ (3)

= argmax
zti

∫
N (zti )

C · p
(
y | zti

)
p
(
zti

)
(4)

where N (zti) = {z′ : ∥z′ − zti∥ ≤ ϵ}. (5)

Even in deterministic models, latent inversion can be
framed probabilistically: given a real-world image y, we
seek Zti that maximizes the integrated mass.

2.3. Optimized Inversion Starting Point
Directly solving Eq. (4) is computationally expensive due
to the need for backpropagation through the ODE. To ad-
dress this, we adopt Tweedie’s formula [2] to approximate
the ODE path:

argmin
zti

∑
z′∈N (zti )

∥y − z′ − (σ0 − σi)vθ(zti , ti)∥2, (6)

where σi is the scheduled coefficient at timestep i.
Though exact inversion approach can get inverted latent

with good reverse path. They still incurs a non-negligible
error with this Tweedie’s estimation. Moreover, our formu-
lation aims to find the point where the entire neighborhood
closely matches the target y, merely inversion method with
numerical solver or path mixture often results in an unsta-
ble solution that lacks smooth differentiability. To this end,
we propose a novel method to approximate Eq. (6). Fol-
lowing [9], the fixed-point sequence for the one-step inver-
sion problem in large flow models exhibits symmetric clus-
ters, with pairwise means concentrating in a stable region.
Within this region, the one-step reward path provides a re-
liable approximation of the original input. We define the
fixed-point iteration as:

z
(k+1)
t0 = y − (σ0 − σi)vθ(z

(k)
t0 , σt0), (7)

with the initial condition z
(0)
t0 = y.

Due to the symmetric clustering, latent variables at odd
and even iterations separate naturally:

Zodd = {z2k+1
t0 } and Zeven = {z2kt0 }.

We further observe that averaging corresponding odd and

2



Figure 2. Top: Age progression transformation from young to elderly. Bottom: Scene transformation of a toy robot with increasingly
elaborate background. Compared to RF-Inversion[6] and Diff-Morpher[8], our method Flow-Optimizer produces significantly smoother
transitions and better preserves identity and structural consistency.

even variables,

z̄ =
zodd + zeven

2
,

yields a sufficiently accurate approximation of y under
Tweedie’s estimator. Thus, by randomly pairing elements
from Zodd and Zeven, we construct latent variables at t0
that effectively lower the objective in Eq. (6). Next, we
randomly select one averaged latent—akin to Monte Carlo
sampling in a favorable neighborhood—to initialize opti-
mization.

2.4. From Reconstruction to Smooth Interpolation
While solving Eq. (6) for reconstruction, we observe that
the smooth structure around the averaged latent z̄ reliably
provides an initial point for reconstructing y. This not only
stabilizes optimization but also suggests that the surround-
ing latent space follows a well-behaved trajectory, allowing
smooth and controlled adjustments.

Building on this, we find that optimization extends be-
yond reconstruction to broader tasks, such as controlled in-

terpolation. Specifically, replacing y with a perturbed ver-
sion ỹ still yields high-quality latents within a few steps.
This reveals a natural interpolation path between y and ỹ,
enabling smooth transitions between input variations. For-
mally, we optimize:

argmin
zti

∑
z′∈N (zti )

∥ỹ − z′ − (σ0 − σi)vθ(zti , ti)∥2. (8)

To ensure the entire interpolation path remains within a
valid region without latent deterioration, we propose an iter-
ative optimization pipeline. We begin by denoting the initial
target as y0 and optimizing towards y0 to obtain a sequence
of latent estimates via Tweedie’s estimator:

z(0, 0), z(0, 1), . . . , z(0, k).

The final latent variable z(0, k) is then treated as the new
target y1 to initiate the next optimization segment. This
process is iteratively repeated, ensuring that each segment
of the interpolation path remains within a well-behaved re-
gion of the latent space.
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Figure 3. Guided Editing with mixture loss towards ’old’ and
’robot’

Figure 4. Guided Editing from Game Rendering style towards
photorealistic style

Loss1 =
∑

z′∈N (zti )

∥∥∥ỹ1 − z′ −
(
σ0 − σi

)
vθ
(
zti , ti

)∥∥∥2. (9)

We observe that these individual interpolation targets can
be combined into a composite loss function:

Loss = Loss1 + Loss2 + · · · , (10)

leading to a more flexible approach that can accommodate a
wide range of downstream tasks, as guided elaborate editing
towards mixture of semantics in Figure 3 and sim-to-real
editing in Figure 4.

3. Experiments
We evaluate Flow-Optimizer across diverse image manip-
ulation tasks. Results show that it enables high-quality,
controllable interpolation while preserving semantic consis-
tency and structure, and significantly improves visual qual-
ity and efficiency over existing methods.

3.1. Implementation Details
All experiments were conducted using the Black Forest
Labs’ FLUX.1-Depth-dev model[3], a strong foundation for
depth-aware image generation. We used a single A6000
GPU with 48G memory for all experiments. For baseline
comparison, we implemented all the baselines we are con-
sidering.

For oscillation inversion, we used 30 fixed-point itera-
tions, which empirically sufficient to capture stable clusters.
A timestep of ti = 0.55 was chosen to balance structure
preservation and edit-ability. Optimization was performed
using Adam with learning rates of 0.05 for the noise pre-

dictor and 0.01 for the latent variable. Our iterative strategy
used 5–6 rounds with 4–5 steps each. The total time for a
complete interpolation sequence is about 10 seconds, signif-
icantly faster than comparable methods requiring minutes.

3.2. Geometry-Preserving Image Interpolation
Geometry-preserving interpolation is challenging for exist-
ing methods, as it requires preserving structure while allow-
ing appearance to vary smoothly. Although image genera-
tion conditioned on depth, masks, and sketches can yield
visually plausible, well-aligned images, it still lacks fine-
grained control, which hinders the direct use of generative
editing techniques in downstream tasks such as texture syn-
thesis, relighting, and inverse rendering. Flow-Optimizer
addresses this through two key components: (1) oscillation-
based inversion, which discovers semantically coherent la-
tent clusters that maintain structure, and (2) an optimization
formulation that explicitly promotes structural consistency
during interpolation.

Figure 2 demonstrate Flow-Optimizer’s effectiveness on
elaborate character transformations. Our method captures
simultaneous changes in textures and lighting while pre-
serving the underlying object features and geometry. This
contrasts sharply with RF-Inversion[6], which struggles to
create meaningful intermediate states, and Diff-Morpher[8],
which produces inconsistent transitions with varying rates
of change across the sequence.

To support our claim that our method achieves more con-
sistent interpolation regarding especially underlying geom-
etry, we first collect 20 face pairs generated by rough depth-
aligned generation, and use our method, RF-Inversion, as
well as diff-morpher to interpolate. We then use Google
Media Pipe toolkit to extract 478 key features per image
to track the interpolation consistency in geometry. The av-
erage feature point distance of our interpolation result is
85.33, compared to 123.74 for RF-inversion and 153.22
for Diff-morpher. Quantitative results support our findings.
Flow-Optimizer outperforms prior methods.

4. Conclusions
In this paper, we presented Flow-Optimizer, a framework
that leverages the intrinsic structure of rectified flow mod-
els’ latent space for high-quality image interpolation. By
combining oscillation inversion techniques with optimized
initialization point selection and an iterative optimization
strategy, we effectively address the challenges of main-
taining semantic consistency during transformations. Our
experimental results demonstrate that Flow-Optimizer out-
performs existing methods in visual quality and structural
preservation. This work not only provides practical tech-
niques for structure-aware image editing but also offers new
insights into the fundamental properties of flow model la-
tent spaces.
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