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Abstract

Fine-grained image analysis (FGIA) plays a crucial role
in precise object understanding, enabling detailed segmen-
tation and categorization of specific object components,
e.g., valve elements or automotive parts. Traditional FGIA
methods, which primarily rely on geometric descriptors, of-
ten struggle with variable real-world conditions, i.e., il-
lumination changes, weathering effects, and diverse view-
ing angles. To address these limitations, we proposed a
multi-modal framework that combines generative AI with
fine-grained visual guidance, jointly performing part-level
alignment and detailed image synthesis. Our proposed
method leverages advanced computer vision techniques for
precise subclass recognition and segmentation while in-
tegrating generative models capable of generating accu-
rate multi-view images from single-view inputs. This syn-
thesis process incorporates explicit functional constraints
and clear semantic alignments, significantly improving seg-
mentation accuracy by mitigating mismatches between vi-
sual features and semantic cues. Experimental results con-
firm that our approach notably outperforms state-of-the-art
methods in both fine-grained segmentation accuracy and ro-
bust image generation under challenging conditions.

1. Introduction
Fine-grained image analysis (FGIA) represents a critical
challenge in computer vision (CV) and pattern recogni-
tion, significantly impacting real-world applications that
demand precise differentiation among closely related ob-
ject categories, such as specific valve types or car mod-
els [21, 46, 47]. The inherent complexity of FGIA arises
primarily from subtle inter-class variations combined with
pronounced intra-class differences, necessitating accurate
localization and extraction of discriminative features from
extensive image datasets [45–47]. Recent advancements in
FGIA have extended to include refined subclass identifica-
tion, leveraging visual references to improve differentiation
among highly similar categories [7, 17, 18, 22].

Traditional and state-of-the-art (SOTA) FGIA tech-
niques, such as Local Binary Patterns (LBP), Histogram of
Gradients (HOG), and SIFT [2], along with deep learning-
based approaches, typically depend on geometric descrip-
tors (e.g., edges, salient keypoints). These methods seek
robustness to occlusions and limited viewing angles (< 45
degrees), focusing predominantly on object recognition.
Nonetheless, practical conditions frequently introduce sig-
nificant challenges due to variable lighting, occlusions, sur-
face degradation, and diverse viewpoints, complicating re-
liable subclass identification. Notably, standard reference
data predominantly features pristine objects, contrasting
sharply with real-world images subject to environmental de-
terioration.

Figure 1. Comparison of fine-grained valve subclass identification
against generic classification.

Most existing FGIA methodologies employ a purely 2D-
to-2D approach [57], prevalent in both academic research
and industry, e.g., Google Vertex. Meanwhile, the integra-
tion of 2D-to-3D generative models to bolster fine-grained
identification remains relatively underexplored. Current
methods struggle under substantial appearance variations
arising from environmental or viewpoint shifts, limiting
their capability to consistently achieve fine-grained sub-
class recognition. Typically, generative AI (Gen-AI) and



FGIA methodologies have evolved independently, lacking
integrated frameworks capable of simultaneously address-
ing subclass differentiation and robust visual representation.

Addressing these critical limitations, this paper pro-
poses a novel FGIA framework that synergistically in-
tegrates spatio-temporal analysis, conventional CV tech-
niques, and Gen-AI for robust and precise fine-grained sub-
class identification. Our methodology combines advanced
CV-based recognition [30, 31] and classification techniques
[20, 39], enhancing segmentation and differentiation be-
tween reference and target subclasses. Furthermore, the
framework employs Gen-AI models, such as Stable Diffu-
sion [26, 42, 44, 48], to generate detailed 3D representa-
tions from 2D images, enabling robust multi-view analysis
across varying conditions, including occlusion, corrosion,
and viewpoint changes.

The primary contributions of this research are fivefold:

• First, a comprehensive FGIA framework integrating
spatio-temporal analysis with Gen-AI to overcome lim-
itations of current static 2D approaches, enabling detailed
subclass-specific image generation.

• Second, novel constraints designed to address inconsis-
tencies between visual and textual subclass representa-
tions, thereby significantly enhancing subclass identifica-
tion accuracy.

• Third, utilization of temporal image sequences to miti-
gate issues arising from environmental degradation, sig-
nificantly improving the robustness and reliability of fine-
grained recognition.

• Fourth, a novel multi-modal vision-language approach
addressing previous gaps in semantic understanding by
generating comprehensive and precise subclass descrip-
tions.

• Finally, empirical validation demonstrating superior sub-
class identification performance of our proposed method
on realistic datasets, highlighting substantial improve-
ments achieved through 2D-to-3D generative modeling
and functional segmentation techniques compared to cur-
rent state-of-the-art FGIA methodologies.

2. Related work

This section describes recent advancements in generative
modeling for computer vision, emphasizing the integra-
tion of vision-language models (VLMs) and large language
models (LLMs), particularly for text-to-image generation.
VLMs utilize extensive multimodal datasets to capture
complex image-text correlations, while LLMs contribute
contextual understanding, significantly enhancing gener-
ated image coherence and relevance. We critically analyze
significant contributions from previous works, highlighting
the strengths and limitations of existing approaches.

2.1. Generative Vision-Language Models
Recent surveys have summarized core architectures, train-
ing methods, and applications of VLMs and generative
models, providing valuable overviews of model evolution
from traditional vision systems to modern web-scale archi-
tectures. These works categorize models comprehensively,
detailing their theoretical foundations and practical appli-
cations across various vision tasks, particularly in text-to-
image synthesis and image editing [12, 35, 54]. Key foun-
dational models include transformer-based systems such as
DALL-E [33] and CLIP [32], as well as latent diffusion
models like Stable Diffusion [36]. These models signifi-
cantly advanced image realism, synthesis quality, and com-
putational efficiency [8, 15, 41].

However, existing literature primarily offers theoretical
insights, inadequately addressing practical challenges like
dataset realism, diversity, and domain adaptation. A notable
performance gap remains between synthetic and real-world
data, with limitations in capturing complex scene dynamics
and generalizing effectively across diverse real-world con-
ditions. Consequently, new methodologies are required to
improve synthetic image realism, diversity, and generaliza-
tion capabilities for practical deployment.

2.2. Vision-Guided and Language-Guided Methods
Contemporary methods combining VLMs and LLMs have
advanced image generation realism, robustness, and per-
sonalization significantly [4, 5, 9, 28, 34, 37, 50, 52, 53].
Models featuring modality collaboration and adaptive mod-
ules have set new benchmarks in image synthesis. Addi-
tionally, language-guided generative frameworks have en-
hanced controllability, precision, and contextual relevance,
leveraging textual instructions for improved image editing
and synthesis control [3, 6, 23, 43, 49, 55].

Recent progress in generative modeling has revealed a
growing emphasis on adaptability and task-specific capa-
bilities. Advances such as plausibility-aware 3D mesh de-
formation, personalized generation, open-vocabulary seg-
mentation, and robust detection of synthetic content reflect
this shift [11, 19, 24, 27, 29, 38, 51]. However, critical
challenges remain unresolved. Current models struggle to
synthesize images that faithfully capture physical phenom-
ena—such as material corrosion, realistic shadow casting,
and consistent physical scaling—hindering their applica-
tion in domains where physical realism is essential. Ad-
ditionally, issues related to computational efficiency, ambi-
guity in textual conditioning, scalability, and ethical con-
siderations continue to limit deployment. Addressing these
gaps demands new approaches that integrate physical pri-
ors, improve generative accuracy under ambiguous super-
vision, and enforce ethical and scalable design—paving the
way for robust and practically viable generative systems in
vision tasks.



3. Proposed method

This section describes in detail the proposed method as
shown in Figure 2. Given an input image x of an indus-
trial object, we first obtain its latent–noise representation by
running the forward phase of a deterministic DDIM sched-
uler [40] for T steps, yielding εT . Image captions c enu-
merate fine-grained attributes such as material, color, and
component geometry, respectively.

Figure 2. Proposed method for image generation

Starting from εT , a diffusion generator Gθ [16] then ex-
ecutes the reverse DDIM trajectory to synthesize an image
x̂ = Gθ(εT ), which is immediately re-captioned by C to
obtain ĉ.

The four signals (x, x̂, c, ĉ) are coupled through a
fine-grained loss LFG. The resulting gradient is back-
propagated only through the generator parameters θ; the
captioner C and the forward DDIM path remain frozen. Be-
cause the same deterministic scheduler drives both the for-
ward and reverse processes, each training step forms an ex-
act cycle, eliminating stochastic mismatch and allowing the
model to concentrate capacity on attribute-level fidelity—as
required, for example, to distinguish a rust-flecked bronze
valve from a clean brass one.

Let fθ be the vision encoder that maps an image to an
embedding z = fθ(x), and let gϕ be a text encoder that
maps the caption to t = gϕ(c). For every original image, x
we synthesize two additional variants: x′ that mimics tem-
poral deterioration (e.g. rust, paint fading) and x′′ that mim-
ics environmental variation (e.g. glare or low light). The
overall training objective is a weighted sum of four terms

Ltotal = λctrLcontrast + λdetLdetail + λtmpLtemporal + λenvLenv,
(1)

where the λ coefficients balance the influence of each com-
ponent.

(i) Contrastive Loss Lcontrast. We adopt the margin-based
formulation of Hadsell et al. [13]:

Lcontrast =
1
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where D = ∥zi− zj∥2, y = 1 if the pair (xi, xj) belongs to
the same fine-grained subclass and 0 otherwise, and m is a
fixed margin.

(ii) Detail-Alignment Loss Ldetail. To force individual
image patches to align with the corresponding textual to-
kens, we split x into K patches {pk} with embeddings {zk}
and obtain token embeddings {tk}. Using an all-pairs In-
foNCE over the similarity matrix Skj = ⟨zk, tj⟩, we define

Ldetail = − 1
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) , (3)

where τ is a temperature hyper-parameter. Patch embed-
dings are extracted from a ViT backbone [10] or its hierar-
chical variant Swin-T [25].

(iii) Temporal Consistency Loss Ltemporal. For the pair
(x, x′) that differs only by time-based degradation, we im-
pose

Ltemporal =
∥∥fθ(x)− fθ(x

′)
∥∥2
2
. (4)

If ground-truth masks identifying the corroded region are
available, the loss can be evaluated only on those pixels; we
also experiment with an optional CycleGAN-style consis-
tency term [56].

(iv) Environment-Invariant Loss Lenv. Let Ae(·) denote
a photometric augmentation that simulates a specific envi-
ronmental condition e (overexposure, glare, or low light).
We minimize

Lenv = Ee

∥∥fθ(x)− fθ
(
Ae(x)

)∥∥2
2
, (5)

and optionally treat Ae(x) as a positive sample in the con-
trastive term.

Weight Selection. We follow the guideline λctr = 1,
λdet ∈ [1, 2], λtmp ∈ [0.2, 0.5], and λenv ∈ [0.2, 0.5], and
employ GradNorm to adaptively rescale the λ values during
training.

The composite objective (1) therefore enforces instance-
level discrimination, part-level correspondence, temporal
stability, and environmental robustness simultaneously, en-
abling the generator to reproduce fine-grained visual details
with a level of fidelity previously unattainable by diffusion
models.



4. Experiments
This section presents quantitative results for subtype identi-
fication—with and without our proposed data-augmentation
method—alongside qualitative visualizations.

4.1. Subtype Identification Experiment
We assembled 872 images of six valve types—ball, check,
butterfly, control, gate, and plug—with subtype counts
ranging from 5 to 42 images each to evaluate fine-
grained classification without augmentation. Augmenting
the dataset by 50 % markedly enriched appearance and pose
diversity, boosting model robustness and generalization.

Figure 3. Generated images from different views

Figure 4. Generated images from different conditions

Table 1 shows classification accuracy (%) and per-
image runtime for ResNet-101 [14] and FineLIP [1], with
and without our augmentation. Augmentation consistently
boosts accuracy by 9% —ResNet-101 from 76.12 to 85.3
and FineLIP from 79.65 to 88.7—while adding only 20 ms
per image in the ResNet pipeline. FineLIP’s richer augmen-
tation achieves the highest accuracy but a 2.5 s per-image
cost, underscoring the expressiveness–runtime trade-off.

Table 1. Accuracy Comparison of ResNet-101 [14], FineLIP [1]
with and without data augmentation using proposed method

Method Without(%) With(%) Cost (ms)
ResNet-101 [14] 76.12 85.3 20

FineLIP [1] 79.65 88.7 2500

The improved performance of the proposed method can
be attributed to the advanced feature integration and dy-

namic modulation strategies that better leverage multi-view
information and time-varying conditions. This enhanced
approach effectively bridges the gap between subtle visual
variations and robust feature extraction, thereby providing
a significant performance boost over existing methods in
challenging fine-grained classification tasks.

4.2. Experiment on detailed image generation
This subsection describes a qualitative evaluation of our
model’s ability to generate highly detailed images of indus-
trial valve components from fine-grained textual prompts.
Prompt: A T-shaped valve body with raised-face flanges
reveals a 2-inch, Class-300 globe (or gate) valve, its stem
and bonnet just peeking into view. Crisp cast-in mark-
ings—KITZ, 2, STEEL, 300, WCB—are joined by a small
boxed code and “C”/“1” identifiers on the bosses. The
unpainted, light-grey carbon-steel surface bears a shot-
blasted matte texture and machining marks on the flange
faces. Eight hex-head studs and nuts clamp the bonnet,
their edges darkening with tarnish and early oxidation.
Cinnamon-brown rust halos around bolt holes, faint streaks
beneath lettering, and reddish pits on the lower flange rim
signal early-stage corrosion, while the rest of the body re-
mains metallic grey. Figure 5 shows that the generated im-
ages capture the prompt’s specified details; however, some
elements remain unrealistic—for example, the characters
embossed on the valve body are not rendered convincingly.

Figure 5. Generated images: (a) the first inference, (b) the second
inference

5. Conclusion
This paper has presented a powerful generative data-
augmentation strategy for fine-grained image analysis that
injects photorealistic, semantically rich variants directly
into training to improve subclass recognition and detailed
image generation. Our proposed method has posed con-
ditions at a diffusion model with fine-grained textual de-
scriptors—capturing illumination shifts and time-varying
—to synthesize realistic multi-view samples from single-
view images, then aligns them with real data in a uni-
fied visual–semantic embedding. This tight coupling
of generative synthesis and semantic guidance yields far
greater appearance and pose diversity than standard aug-
mentation schemes, driving a substantial leap in robust-
ness without any bespoke post-processing. Future work
will incorporate physical scale estimation into this frame-
work.
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ficiently annotating object images with absolute size infor-
mation using mobile devices. International Journal of Com-
puter Vision, 127(2):207–224, 2019. 1

[18] Abhishek Kar, Shubham Tulsiani, João Carreira, and Jiten-
dra Malik. Amodal completion and size constancy in natural
scenes. CoRR, abs/1509.08147, 2015. 1

[19] Laurynas Karazija, Haotian Zhang, and Yuheng Li. Diffu-
sion models for open-vocabulary segmentation. In CVPR
Workshop on Generative Models for Computer Vision, 2024.
2

[20] Jashanpreet Kaur and Gurpreet Singh. Ai meets astronomy:
Efficientb0- powered classification of ai-synthesized celes-
tial objects using spacenet. In 2025 International Confer-
ence on Multi-Agent Systems for Collaborative Intelligence
(ICMSCI), pages 870–875, 2025. 2

[21] Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-Fei.
Collecting a large-scale dataset of fine-grained cars. In
Second Workshop on Fine-Grained Visual Categorization
(FGVC2), in conjunction with CVPR, Portland, OR, 2013.
1

[22] Byeong-Uk Lee, Jianming Zhang, Yannick Hold-Geoffroy,
and In So Kweon. Single view scene scale estimation us-
ing scale field. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
21435–21444, 2023. 1

[23] Yuheng Li, Haotian Zhang, Tianle Xu, Yiping Yang, Yi-
hao Zhang, Jianzhu Zhu, and Ming-Hsuan Yang. Language-
guided image generation with clip, 2023. 2

[24] Chen Liu, Haotian Zhang, and Yuheng Li. Turns: A new
benchmark for robust detection of ai-generated videos. In
CVPR Workshop on Generative Models for Computer Vision,
2024. 2

[25] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 10012–10022, 2021. 3

[26] Mariam Alaa Metwally and Milad Ghantous. Detecting
generative ai in images. In 2024 International Mobile, In-
telligent, and Ubiquitous Computing Conference (MIUCC),
pages 214–220, 2024. 2

[27] Jiwan Park, Sanghyeon Kim, and Joonho Lee. Cat: Con-
trastive adapter training for personalized image generation.
In CVPR Workshop on Generative Models for Computer Vi-
sion, 2024. 2

[28] Jiwan Park, Sanghyeon Kim, and Joonho Lee. Learn-
ing compositional language-based object detection with
diffusion-based synthetic data. In CVPR Workshop on Gen-
erative Models for Computer Vision, 2024. 2

[29] Hieu Pham, Haotian Zhang, and Yuheng Li. Robust concept
erasure using task vectors. In CVPR Workshop on Generative
Models for Computer Vision, 2024. 2

[30] Daniel Phillips and Patrick Hosein. On the detection of ma-
nipulated identification documents. In 2024 IEEE Interna-
tional Conference on Technology Management, Operations
and Decisions (ICTMOD), pages 1–6, 2024. 2



[31] Chuyue Qi, Zonglin Yang, and Yuxin Wen. Improved resnet-
50 model for ai image recognition based on multi-scale at-
tention mechanism. In 2024 6th International Conference
on Communications, Information System and Computer En-
gineering (CISCE), pages 825–829, 2024. 2

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision, 2021. 2

[33] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation, 2021. 2

[34] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents, 2022. 2

[35] Anushka Raut and Amritpal Singh. Generative ai in vision:
A survey on models, metrics and applications, 2024. 2

[36] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, 2022. 2

[37] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image dif-
fusion models with deep language understanding, 2022. 2

[38] Andrew Shih, Daniel Goldman, and Jonathan T. Barron. Ex-
tranerf: Visibility-aware view extrapolation of neural radi-
ance fields with diffusion models. In CVPR Workshop on
Generative Models for Computer Vision, 2024. 2

[39] Gurpreet Singh, Kalpna Guleria, and Shagun Sharma. A pre-
trained efficientnetv2b0 model for the accurate classification
of fake and real images. In 2024 8th International Confer-
ence on Electronics, Communication and Aerospace Tech-
nology (ICECA), pages 1082–1086, 2024. 2

[40] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations (ICLR), 2021. 3

[41] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions, 2020. 2

[42] Phi-Ho Truong, Tien-Dung Nguyen, Xuan-Hung Truong,
Nhat-Hai Nguyen, and Duy-Trung Pham. Employing a cnn
detector to identify ai-generated images and against attacks
on ai systems. In 2024 1st International Conference On
Cryptography And Information Security (VCRIS), pages 1–
6, 2024. 2

[43] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali
Dekel. Plug-and-play diffusion features for text-driven im-
age generation, 2023. 2

[44] Muthaiah U, A. Divya, T.N. Swarnalaxmi, and Vidhyasagar
BS. A comparative review of ai-generated vs real images and
classification techniques. In 2024 4th International Confer-
ence on Ubiquitous Computing and Intelligent Information
Systems (ICUIS), pages 141–147, 2024. 2

[45] Xiu-Shen Wei, Chen-Wei Xie, and Jianxin Wu. Mask-cnn:
Localizing parts and selecting descriptors for fine-grained
image recognition. CoRR, abs/1605.06878, 2016. 1

[46] Xiu-Shen Wei, Jianxin Wu, and Quan Cui. Deep learn-
ing for fine-grained image analysis: A survey. CoRR,
abs/1907.03069, 2019. 1

[47] Xiu-Shen Wei, Yi-Zhe Song, Oisin Mac Aodha, Jianxin Wu,
Yuxin Peng, Jinhui Tang, Jian Yang, and Serge Belongie.
Fine-grained image analysis with deep learning: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 44(12):8927–8948, 2022. 1

[48] Stuart Weir, Muhammad Shahbaz Khan, Naghmeh Morad-
poor, and Jawad Ahmad. Enhancing ai-generated image de-
tection with a novel approach and comparative analysis. In
2024 17th International Conference on Security of Informa-
tion and Networks (SIN), pages 1–7, 2024. 2

[49] Hu Xu, Haotian Zhang, Yuheng Li, Yiping Yang, Yihao
Zhang, Jianzhu Zhu, and Ming-Hsuan Yang. Versatile dif-
fusion: Text, images and variations, all in one model, 2023.
2

[50] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan,
Yiyang Zhou, Junyang Wang, Anwen Hu, Pengcheng Shi,
Yizhuo Shi, et al. mplug-owl2: Revolutionizing multi-modal
large language model with modality collaboration. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 13947–13957, 2024.
2

[51] Sangwon Yoo, Jiwan Lee, and Sanghyeon Kim. As-
plausible-as-possible: Plausibility-aware mesh deformation
using 2d diffusion priors. In CVPR Workshop on Generative
Models for Computer Vision, 2024. 2

[52] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, et al. Vector-quantized image modeling with im-
proved vqgan, 2021. 2

[53] Jiahui Yu, Jing Yu Koh, Vijay Vasudevan, Zirui Wang,
Yuanzhong Xu, Gunjan Baid, Yinfei Yang, Alexander Ku,
Yang Yang, Hongxia Yang, et al. Scaling autoregressive
models for content-rich image completion, 2022. 2

[54] Huiping Zhang, Hongwei Liu, Rongrong Li, Yibing Liu,
Chunyang Zhou, and Baocai Zhang. Vision-language mod-
els for vision tasks: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(9):6728–6748, 2024.
2

[55] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models, 2023.
2

[56] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages
2223–2232, 2017. 3

[57] Karel Zimmermann. Similarity among the 2d-shapes and the
analysis of dissimilarity scores, 2022. 1


	Introduction
	Related work
	Generative Vision-Language Models
	Vision-Guided and Language-Guided Methods

	Proposed method
	Experiments
	Subtype Identification Experiment
	Experiment on detailed image generation

	Conclusion

