
Towards Efficient Vision Transformers for Perceptual Quality Assessment of
Diffusion-Generated Images

Shivam Bhardwaj and Tushar Shinde
Indian Institute of Technology Madras Zanzibar

shinde@iitmz.ac.in

Abstract

The rapid rise of Artificial Intelligence Generated Content
(AIGC) demands scalable and efficient Image Quality As-
sessment (IQA) techniques, particularly for deployment in
resource-constrained environments. Our approach lever-
ages on the foundation models such as CLIP and DINO,
but their computational overhead limits practical usage. In
this work, we present a novel framework for efficient IQA
by adaptively compressing Large Vision Models (LVMs) us-
ing layer-wise pruning and mixed-precision quantization
guided by layer importance scores. Our method dynami-
cally reduces model size while preserving perceptual sen-
sitivity critical to assessing generative artifacts. We evalu-
ate our approach on two dedicated AIGC IQA benchmark
datasets: AGIQA-1K and AGIQA-3K and demonstrate up to
95% reduction in model size with minimal drop in human-
perception correlation metrics such as SRCC and PLCC.
Our method sets a new state-of-the-art in compact founda-
tion models for generative content quality assessment and
offers a scalable path toward real-time AIGC monitoring
on edge platforms.

1. Introduction and Related Work

Recent advances in generative models, including Genera-
tive Adversarial Networks (GANs) [6] and diffusion-based
approaches [4, 10], have enabled the synthesis of high-
quality visual content. This progress has accelerated the
emergence of AI-generated content (AIGC) across various
modalities such as text, image, audio, and video [1, 30].
Within this domain, AI-generated images (AGIs) have
gained particular attention due to their expressive potential
and broad applicability. However, unlike natural scene im-
ages (NSIs) that conform to physical imaging constraints,
AGIs often exhibit semantic anomalies and visually implau-
sible textures [36], challenging traditional assumptions in
computer vision.

Evaluating the perceptual quality of AGIs is crucial

for both benchmarking generative models and ensuring vi-
sual consistency in downstream tasks. Conventional full-
reference metrics such as PSNR and SSIM [20, 29] rely
on pixel-wise fidelity and are inadequate for AGIs, which
demand high-level assessments of semantic alignment, aes-
thetics, and generative artifacts [22]. In response, datasets
like AGIQA-1K [36] and AGIQA-3K [16] have been cu-
rated with Mean Opinion Scores (MOS) to reflect human
perceptions of AGI-specific distortions.

To leverage such annotations, deep learning-based IQA
models have been developed, utilizing data-driven features
for perceptual prediction [5, 11, 13]. These models typi-
cally extract features f(I) from images I and map them to
perceptual scores ŝ = g(f(I)). However, these methods of-
ten remain optimized for NSIs and fail to generalize to the
unique distortions of AGIs. Classical no-reference methods
like BRISQUE [18] and NIQE [19] also fall short, as AGIs
frequently violate natural scene statistics due to stylistic and
semantic deviations.

Recent works have started exploring dedicated IQA
models for AGIs. For instance, Zhang et al. [36] proposed
an MOS-correlated framework capturing AI-induced arti-
facts and perceptual unnaturalness. Other efforts [27, 33,
34] have employed task-specific architectures or foundation
models, yet many still rely on handcrafted or pixel-based
loss functions, limiting their semantic understanding in the
absence of reference images.

Vision Transformers (ViTs), known for their global con-
text modeling and superior performance in image classifica-
tion [3], are underexplored in AGI IQA. While ViTs extract
hierarchical features through self-attention and have shown
promise in full-reference IQA, their adaptation to AGI sce-
narios is hindered by domain gaps and computational costs.
Foundation models like CLIP [23] and DINO [2] offer se-
mantically rich representations and remain promising yet
underutilized for perceptual modeling in synthetic image
domains.

Furthermore, the deployment of AGI models on
resource-limited devices underscores the need for compact
and efficient IQA models. Model compression techniques,



such as pruning and quantization [8], have become essen-
tial for reducing memory and computation overhead. Prun-
ing eliminates less important parameters based on saliency,
while quantization maps high-precision weights to lower-bit
representations, enabling faster and smaller models without
significant loss in performance.

Contributions. We propose a lightweight and
semantically-aware IQA framework tailored for AGIs, with
the following key contributions:

• We introduce an AGI-specific IQA framework that lever-
ages frozen Vision Transformers (CLIP [23], DINO [2])
paired with a lightweight regression head, enabling
semantically-informed quality prediction with minimal
computational cost.

• We incorporate a layer-wise compression scheme com-
bining pruning and quantization, guided by each layer’s
contribution to perceptual quality. This approach achieves
substantial model compression with negligible perfor-
mance loss.

• Extensive experiments on AGIQA-1K and AGIQA-3K
demonstrate state-of-the-art correlation with human judg-
ments. Our compressed models retain high accuracy
while significantly reducing model size, making them
ideal for practical AGI evaluation.

The rest of this paper is organized as follows: Section 2
introduces our IQA framework and adaptive compression
technique. Section 3 details the experimental setup. Sec-
tion 4 reports quantitative and qualitative results. Finally,
Section 5 concludes the paper and outlines future research
directions.

2. Methodology

We propose an efficient Image Quality Assessment (IQA)
framework for AI-Generated Content (AIGC) by leverag-
ing pre-trained Large Vision Models (LVMs) such as CLIP
and DINO. These serve as fixed feature extractors, followed
by a lightweight, trainable Multi-Layer Perceptron (MLP)
regressor for perceptual quality prediction. To enable de-
ployment on resource-constrained devices, we introduce a
model compression approach inspired by [24] and driven
by the Quality-preserving Layer Importance Score (QLIS),
which guides both pruning and quantization in an adaptive,
layer-wise manner.

2.1. Model Architecture
Given an input image I ∈ RH×W×3, the frozen backbone
fθ (CLIP or DINO) extracts high-level features:

z = fθ(I) ∈ Rd (1)

where d is the output dimensionality of the backbone
(e.g., d = 768 for CLIP). The features z are then passed

through a trainable MLP regressor gϕ:

q̂ = gϕ(z) (2)

producing a scalar quality prediction q̂ ∈ R. The MLP
is optimized using Mean Squared Error (MSE) loss against
ground-truth subjective scores:

LMSE =
1

N

N∑
i=1

(
q̂i − qtrue

i

)2
(3)

2.2. Quality-preserving Layer Importance Score
To facilitate perceptually-aware compression of the vision
backbone, we introduce a Quality-preserving Layer Impor-
tance Score (QLIS) for each layer l. QLIS integrates struc-
tural, statistical, and information-theoretic features to esti-
mate the importance of individual layers. Inspired by [24],
this metric helps identify layers that are perceptually more
significant and should therefore be retained with higher fi-
delity during compression.

The structural importance is captured by the parameter
proportion Pl, which denotes the relative number of param-
eters in layer l compared to the entire model. Information
diversity is quantified through normalized entropy El, de-
rived from Shannon entropy over quantized weight distri-
butions. Sparsity, indicating the compressibility of a layer,
is captured using normalized sparsity Sl, which reflects the
proportion of near-zero weights in the layer. To unify en-
tropy and sparsity, we define the Entropy-Weighted Density
Score (EWDS), which assigns higher scores to dense and
information-rich layers. Finally, QLIS combines structural
significance and compressibility using a tunable parameter
β ∈ [0, 1], balancing parameter proportion and density. A
higher QLIS value implies greater perceptual relevance and
guides the selection of pruning and quantization parameters
for that layer. The equations defining the QLIS computation
are as follows:

Pl =
|θl|∑
j |θj |

(4)

El =
Hl

B
(5)

Sl =
|θ≈0

l |
|θl|

(6)

EWDSl = El · (1− Sl) (7)

QLISl = β · Pl + (1− β) · (1− EWDSl) (8)

where |θl| is the number of parameters in layer l, |θ≈0
l |

is the count of weights satisfying |θ| < ϵ for a small thresh-
old ϵ, Hl is the entropy of layer weights, and B denotes the



full-precision bit-width (e.g., 32 for FP32). The QLIS met-
ric effectively balances model compactness with perceptual
quality preservation. Layers with high QLIS are considered
more perceptually important.

2.3. Layer-wise Adaptive Compression Scheme
QLIS guides both pruning and quantization:

Layer-wise Adaptive Pruning (LAP): Each layer is
pruned by thresholding weights below:

ϵl = kl · σl, (9)

where σl is the standard deviation and kl is QLIS-guided.
Layer-wise Adaptive Quantization (LAQ): Each layer

is assigned a bit-width bl based on its QLIS. Higher QLIS
implies higher precision. Huffman encoding is applied post-
quantization for further compression.

This dual strategy achieves significant compression (up
to 95% size reduction) with negligible perceptual quality
degradation, enabling scalable IQA deployment for AIGC.

3. Experimental Setup
Datasets. We evaluate our framework on two bench-
mark datasets for AI-generated content (AIGC) image qual-
ity assessment: AGIQA-1K [36] and AGIQA-3K [15].
Both datasets provide AI-generated images annotated with
human-assigned Mean Opinion Scores (MOS), which serve
as ground truth for perceptual quality modeling. AGIQA-
1K contains 1,080 images in Anime and Realistic styles,
each with a MOS score. AGIQA-3K comprises 2,982 im-
ages generated using six diffusion-based AIGC models with
diverse prompts and annotated MOS values, offering rich
semantic and visual variability.

Model Training Strategy. We adopt pre-trained vi-
sion encoders (CLIP and DINO) combined with lightweight
MLP regressors. In CLIPIQA, we use the CLIP ViT-
L/14 encoder [23], outputting 768-dimensional features,
followed by an MLP regressor:

Linear(768 → 256) → ReLU → Linear(256 → 1).

The CLIP encoder is frozen during training to retain seman-
tic features, and only the regressor (approx. 200K param-
eters) is optimized. Input images are resized to 224 × 224
and normalized using CLIP’s preprocessing.

In DINOIQA, we utilize the DINO ViT-Base/16 en-
coder [2], trained with self-supervised distillation. The
final transformer block (blocks.11) and normalization
layer (norm) are unfrozen and fine-tuned along with the
appended MLP regressor. This selective tuning enhances
perceptual adaptation while maintaining efficiency.

All models are trained using the Adam optimizer for 20
epochs with a learning rate of 1×10−4 and weight decay of
1× 10−5. The loss function is Mean Squared Error (MSE)

between predicted and ground-truth MOS. We use an 80/20
train-test split with fixed seeds and a batch size of 16. Data
loading is managed with PyTorch’s DataLoader.

Model Compression Settings. To enable model com-
pression, we apply both pruning and quantization. For prun-
ing, we compare uniform pruning with our proposed Layer-
wise Adaptive Pruning (LAP), which assigns pruning multi-
pliers kl ∈ {1.5, 1, 0.5, 0.25, 0} based on layer importance
derived from statistical properties like parameter variance
and activation entropy. For quantization, we perform post-
training quantization using bit-widths bl ∈ {1, 2, 4, 8}, with
8-bit as the baseline. Our Layer-wise Adaptive Quantiza-
tion (LAQ) selects precision levels based on perceptual sen-
sitivity. Huffman coding is applied to the quantized weights
to further compress the model using entropy coding.

Evaluation Metrics. Evaluation is conducted us-
ing standard IQA metrics: Spearman Rank Correlation
Coefficient (SRCC), Kendall Rank Correlation Coeffi-
cient (KRCC), and Pearson Linear Correlation Coeffi-
cient (PLCC), which assess monotonic consistency, rank
agreement, and linear correlation between predictions and
ground-truth MOS, respectively. Compression efficiency is
measured using the Compression Ratio (CR), defined as the
ratio of original to compressed model size.

4. Results and Analysis

We evaluate our compression framework for AIGC-IQA
on AGIQA-1K and AGIQA-3K datasets using DINO and
CLIP-based features. The model is tested under three com-
pression scenarios: (i) pruning-only, (ii) quantization-only,
and (iii) pruning followed by quantization. Performance
is measured using SRCC, KRCC, PLCC, and compression
metrics: CR and Huffman CR (HCR).

4.1. Pruning-only Results
Pruning effectiveness is assessed by varying pruning lev-
els (P level). Aggressive pruning (P level 1.5)
severely degrades performance, particularly for CLIP (e.g.,
SRCC = −0.2134 on AGIQA-1K). DINO exhibits better
resilience (SRCC = 0.4137). Moderate pruning (P level
0.25) improves results significantly (e.g., DINO SRCC =
0.7931, CLIP SRCC = 0.6185) with a ∼1.3× CR.

Our Layer-wise Adaptive Pruning (LAP) achieves su-
perior results by assigning pruning ratios based on layer
importance. On AGIQA-1K, LAP yields SRCC = 0.8250
(DINO), 0.8258 (CLIP), with CRs of 2.2× and 1.9×. Sim-
ilar performance is observed on AGIQA-3K.

4.2. Quantization-only Results
Uniform quantization with bit-widths of 1, 2, 4, and 8 shows
that lower precision yields higher CRs but degrades ac-
curacy. For instance, 1-bit quantization leads to SRCC =



Table 1. Performance comparison on the AGIQA-1K and AGIQA-3K datasets using DINO and CLIP features under various pruning
(P) and quantization (Q) levels. Metrics include SRCC, KRCC, PLCC (correlation coefficients), Compression Ratio (CR), and Huffman
Compression Ratio (HCR).

AGIQA-1K - DINO AGIQA-1K - CLIP AGIQA-3K - DINO AGIQA-3K - CLIP
Method SRCC KRCC PLCC CR HCR SRCC KRCC PLCC CR HCR SRCC KRCC PLCC CR HCR SRCC KRCC PLCC CR HCR
P level 1.5 0.4137 0.2899 0.3490 7.8 7.8 -0.2134 -0.1471 -0.2810 7.9 7.9 -0.0620 -0.0397 -0.0416 7.8 7.8 -0.0274 -0.0188 -0.0286 7.9 7.9
P level 1.0 0.5441 0.3731 0.4785 3.5 3.5 0.2687 0.1858 0.2612 3.4 3.4 -0.0080 -0.0053 -0.0396 3.5 3.5 -0.2308 -0.1532 -0.2831 3.4 3.4
P level 0.5 -0.3216 -0.2161 -0.2873 1.8 1.8 -0.1564 -0.0985 -0.1170 1.7 1.7 -0.1971 -0.1333 -0.2907 1.8 1.8 0.4960 0.3368 0.4807 1.7 1.7
P level 0.25 0.7931 0.6009 0.8188 1.3 1.3 0.6185 0.4469 0.6590 1.3 1.3 0.7709 0.5861 0.8472 1.4 1.4 0.7156 0.5232 0.7237 1.3 1.3

Q 1-bit 0.2519 0.1670 0.1638 32.0 32.0 0.3615 0.2430 0.3480 32.0 32.0 -0.0918 -0.0609 -0.2938 32.0 32.0 0.2221 0.1519 0.3527 32.0 32.0
Q 2-bit -0.1196 -0.0840 -0.1392 16.0 27.2 -0.0677 -0.0445 -0.0193 16.0 27.1 -0.0136 -0.0075 -0.2285 16.0 27.2 0.0389 0.0257 -0.0962 16.0 27.1
Q 4-bit -0.2044 -0.1381 -0.1750 8.0 19.6 -0.3575 -0.2334 -0.3426 8.0 20.7 0.1191 0.0754 0.2012 8.0 19.7 -0.0062 0.0005 -0.0285 8.0 20.7
Q 8-bit 0.8285 0.6468 0.8517 4.0 6.2 0.8240 0.6424 0.8513 4.0 6.2 0.7992 0.6161 0.8678 4.0 6.2 0.8216 0.6439 0.8880 4.0 6.2

Baseline 0.8245 0.6426 0.8497 1.0 1.0 0.8217 0.6388 0.8493 1.0 1.0 0.8000 0.6163 0.8680 1.0 1.0 0.8196 0.6415 0.8895 1.0 1.0

Ours LAP 0.8250 0.6375 0.8580 2.2 2.2 0.8258 0.6272 0.8147 1.9 1.9 0.8001 0.6130 0.8500 1.7 1.7 0.8204 0.6218 0.8147 1.5 1.5
Ours LAQ 0.8268 0.6345 0.8368 6.3 11.4 0.8248 0.6212 0.7947 4.8 8.1 0.8002 0.6125 0.8573 5.7 10.2 0.8195 0.6273 0.8289 4.7 7.9
Ours LAPQ 0.8326 0.6365 0.8313 11.7 22.2 0.8226 0.6215 0.7979 8.1 15.3 0.8003 0.6117 0.8381 7.8 14.7 0.8200 0.6232 0.8150 6.5 12.0

0.2519 (DINO, AGIQA-1K), while 8-bit maintains near-
baseline performance (SRCC ≈ 0.82) with 4× CR and 6.2×
HCR.

Our Layer-wise Adaptive Quantization (LAQ) assigns
bit-widths per layer, improving the trade-off. On AGIQA-
1K, LAQ yields SRCC = 0.8268 (DINO), 0.8248 (CLIP),
with CRs up to 6.3× and HCR up to 11.4×. Similar trends
are noted on AGIQA-3K.

4.3. Pruning + Quantization Results
The full compression pipeline (LAPQ) combines LAP and
LAQ for maximum efficiency. On AGIQA-1K, LAPQ
achieves SRCC = 0.8326 (DINO) and 0.8226 (CLIP),
with CR = 11.7× (HCR = 22.2×) and 8.1× (15.3×), re-
spectively. On AGIQA-3K, it maintains high accuracy
(DINO: 0.8003, CLIP: 0.8200) with substantial compres-
sion (HCRs: 14.7×, 12.0×).

These results confirm that LAPQ not only preserves
model fidelity but also offers synergistic compression ben-
efits, likely aided by structured sparsity and quantization-
induced regularization.

4.4. Comparison with Existing Works
Unlike prior studies focusing individually on pruning or
quantization, we present the first combined compression
strategy tailored for AIGC-IQA. Existing handcrafted or
SVR-based methods (e.g., CEIQ, NIQE, BMPRI, GMLF)
achieve low SRCCs (<0.7). Deep models (e.g., ResNet50,
DBCNN, HyperNet) perform better but are resource-
intensive.

Our LAPQ framework outperforms or matches deep full-
precision models (e.g., SRCC = 0.8326 on AGIQA-1K)
while achieving up to 22.2× compression. The adaptive
nature of our approach enables high efficiency with mini-
mal accuracy loss, making it ideal for edge deployment in
perceptual quality assessment of AIGC.

5. Conclusion
We proposed LAPQ, a Layer-wise Adaptive Pruning and
Quantization framework for compressing deep neural net-

Table 2. Performance comparison of existing methods and the pro-
posed approach on the AGIQA-1K and AGIQA-3K datasets.

AGIQA-1K AGIQA-3K
Method SRCC KRCC PLCC HCR SRCC KRCC PLCC HCR

Hand-crafted based
CEIQ [32] 0.3069 0.2097 0.2836 1.0 0.3228 0.2220 0.4166 1.0
DSIQA [21] -0.3047 -0.2148 -0.0559 1.0 0.4955 0.3403 0.5488 1.0
NIQE [19] -0.5490 -0.3824 -0.5048 1.0 0.5623 0.3876 0.5171 1.0
SISBLIM [7] -0.1309 -0.0889 -0.3575 1.0 0.5479 0.3788 0.6477 1.0

SVR-based
BMPRI [17] 0.0651 0.0400 0.1646 1.0 0.6794 0.4976 0.7912 1.0
GMLF [31] 0.5575 0.4052 0.6356 1.0 0.6987 0.5119 0.8181 1.0
HIGRADE [14] 0.4056 0.2860 0.4425 1.0 0.6171 0.4410 0.7056 1.0

Deep Learning based
ResNet50 [9] 0.6365 0.4777 0.7323 1.0 N/A N/A N/A N/A
StairIQA [26] 0.5504 0.4039 0.6088 1.0 N/A N/A N/A N/A
MGQA [28] 0.6011 0.4456 0.6760 1.0 N/A N/A N/A N/A
DBCNN [35] N/A N/A N/A N/A 0.8207 0.6336 0.8759 1.0
CNNIQA [12] N/A N/A N/A N/A 0.7478 0.5580 0.8469 1.0
HyperNet [25] N/A N/A N/A N/A 0.8355 0.6488 0.8903 1.0

Ours: Efficient LAPQ + LVM backbone based
LAPQ + DINOIQA 0.8326 0.6365 0.8313 22.2 0.8003 0.6117 0.8381 14.7
LAPQ + CLIPIQA 0.8226 0.6215 0.7979 15.3 0.8200 0.6232 0.8150 12.0

works in the context of AI-generated content image qual-
ity assessment (AIGC-IQA). To the best of our knowledge,
this is the first dedicated effort addressing model compres-
sion in this domain for efficient deployment on resource-
constrained platforms.

Unlike fixed pruning or uniform quantization methods,
LAPQ adaptively selects layer-wise sparsity and precision
based on importance, achieving up to 95% model size
reduction with minimal performance loss across multiple
AIGC-IQA benchmarks and large vision model backbones.

Our results demonstrate LAPQ’s effectiveness as a scal-
able and practical solution for real-world AIGC-IQA appli-
cations. Future work will explore joint optimization strate-
gies, hardware-aware compression, and extension to other
generative modalities such as video and 3D content.
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