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Abstract

We present Image2GS, a novel approach that addresses
the challenging problem of reconstructing photorealistic 3D
scenes from a single image by focusing specifically on the
image-to-3D lifting component of the reconstruction pro-
cess. By decoupling the lifting problem (converting an im-
age to a 3D model representing what is visible) from the
completion problem (hallucinating content not present in
the input), we create a more deterministic task suitable
for discriminative models. Our method employs visibility
masks derived from optimized 3D Gaussian splats to ex-
clude areas not visible from the source view during training.
This masked training strategy significantly improves recon-
struction quality in visible regions compared to strong base-
lines. Notably, despite being trained only on masked re-
gions, Image2GS remains competitive with state-of-the-art
discriminative models trained on full target images when
evaluated on complete scenes. Our findings highlight the
fundamental struggle discriminative models face when fit-
ting unseen regions and demonstrate the advantages of ad-
dressing image-to-3D lifting as a distinct problem with spe-
cialized techniques.

1. Introduction

Reconstructing photorealistic 3D scenes from a single im-
age is a difficult but valuable problem that has sought many
solutions. The challenge of 3D scene reconstruction can
be dissected into three layers: image structure prediction
(i.e. coarse 3D information such as depth maps or point
clouds), image-to-3D lifting (i.e. a viewable representation
from novel viewpoints), and 3D completion (i.e. filling un-
seen areas). This paper focuses specifically on image-to-
3D lifting, which we define as the conversion of image to
a 3D model that encompasses what is visible in the image.
Studying this separately from 3D completion offers several
advantages. First, it avoids the hallucination problem inher-
ent in completion tasks which requires the model to in-paint
unseen regions. Secondly, 3D lifting requires only sparse
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multi-image data for training, whereas 3D reconstruction
generally requires data of scenes that are more complete.

Recent works [7, 10] have used 3D structure prediction
pre-training to improve 3D appearance modeling general-
ization, but they have not made the distinction between
lifting and completion. We observe that these are funda-
mentally different problems: lifting is discriminative with
definable correct predictions, while completion is genera-
tive with a distribution of outcomes. Forcing discrimina-
tive models into generative tasks causes the model to predict
“mean”-answers that minimize loss across outcome distri-
butions. Translated to the image-to-3D task, this problem
materializes as blurriness in the outputs. In the most ex-
treme single image to 3D scene setting, this problem is fur-
ther exacerbated due to the limited information provided by
the single image of unseen and occluded regions in the 3D
scene.

However, discriminative models offer several advantages
over generative models. Generative approaches (e.g., diffu-
sion [6, 8] or auto-regressive [9, 13]) require multiple net-
work passes for outputs, increasing compute costs and slow
inference. Another consequence is that indirect loss func-
tions, such as LPIPS [19] computed on rendered images of
3D outputs, are difficult to apply in the optimization of auto-
regressive or diffusion models. As a result, there is signif-
icant interest in retaining the discriminative model frame-
work when approaching the image-to-3D problem.

In this paper, we present Image2GS, an image to 3D
Gaussian Splats [4] model capable of high-fidelity image-
to-3D lifting ( see Fig. 1). Our hypothesis is that by separat-
ing the 3D lifting problem from the 3D completion problem,
we can make the problem more well-defined, and hence
suitable for a discriminative model. We convert 3D com-
pletion into the 3D lifting problem using visibility masks to
remove areas in novel view images that are not visible under
the source view from loss computation. Since real world
3D scenes have no known 3D ground truth, we optimize
per-scene 3D Gaussians to obtain these visibility masks.
We show that this masked training strategy significantly im-
proves reconstruction quality in visible regions compared to
baselines. Furthermore, we find our method trained only on
masked regions to be competitive with SotA discriminative
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Figure 1. In this paper, we focus on the task of image to 3D lifting
- from a single input image, we reconstruct partial 3D scenes that
can be rendered from novel views. Our proposed method achieves

models trained on full target images when evaluated also
on full target images, illustrating that discriminative models
struggle to meaningfully fit unseen regions.

2. Related Works and Background
Feed-forward 3D Reconstruction Feed-forward recon-
struction approaches generate 3D reconstructions directly
from a single or a few images through neural networks.
MINE [5] and SV-MPI [14] predict multi-plane images,
while [16] uses a neural field representation. More re-
cently, LGM [12] and Splatter Image [11] directly predict
3D Gaussian Splats from input images, but are designed
for object reconstruction with no background. More re-
lated to this paper are works that directly predict pixel-
aligned Gaussians, such as pixelSplat [1], MVSplat [2], la-
tentSplat [15], and Flash3D [10]. The last of which also fo-
cuses on the single image input setting and leverages depth
prediction pre-training.

3D Gaussian Splats as Scene Representation 3D Gaus-
sian Splats [4] offer an efficient and high-quality represen-
tation for 3D scene reconstruction by modeling the scene
as a collection of 3D Gaussian primitives. Each Gaussian
primitive is defined by its position µ ∈ R3, covariance ma-
trix Σ ∈ R3×3 (which determines the shape and orienta-
tion), and appearance attributes including a view-dependent
color c(v) ∈ R3 and opacity α ∈ [0, 1]. The unormalized
density function of each 3D Gaussian is given by g(x) =
exp(− 1

2 (x−µ)TΣ−1(x−µ)). During rendering, these 3D
Gaussians are projected onto the image plane, resulting in
2D Gaussians with covariance Σ′ = JWΣWTJT , where
J is the Jacobian of the projection and W is the camera ma-
trix. The opacity of each Gaussian at each pixel is computed
as α′ = αigi(x). The final color at each pixel is computed
through alpha compositing: C =

∑n
i=1 α

′
ici

∏i−1
j=1(1−α′

j),
where Gaussians are sorted front-to-back. This representa-
tion enables efficient differentiable rendering and optimiza-

tion of scene parameters through gradient-based methods,
making it particularly suitable for novel view synthesis and
dynamic scene reconstruction.

3. Method
In the image-to-3D lifting task, the goal is to reconstruct a
3D model of visible regions in the input view. Image2GS
is an image-to-3D lifting model that takes an image as in-
put and outputs a 3D Gaussian splat scene representing vis-
ible areas in the input image. The Image2GS model is a
ViT[3]-based architecture that predicts Gaussian splat at-
tributes per pixel from the input image. Similar to other
image-to-Gaussian splat methods, we train this model on
paired input-view, target view data by supervising the ren-
dered appearance of the Gaussian splats in target views. Un-
like previous works, we specialize the model for the image-
to-3D lifting task by masking unseen regions in the target
view. This requires knowing the 3D scene geometry to es-
tablish visibility between the input and target view, which
is not available in real-world multiview datasets. To over-
come this problem, we preprocess each scene in the dataset
by reconstructing per-scene 3D Gaussian splats, which en-
ables the computation of view-to-view visibility masks that
is consistent with a faithful 3D reconstruction of the scene.
In this section, we first detail the model architecture of
Image2GS, followed by details of how we preprocess the
dataset to create per-scene Gaussian splats, and lastly de-
scribe how the training protocol of Image2GS is tailored to
the image-to-3D lifting task.

3.1. Model

Given an RGB input image x ∈ R3×H×W of a scene, the
model f predicts a set of 3D Gaussians that represents the
3D scene, G = f(x). We parameterize the predicted Gaus-
sians as G = {(µi, αi, θi, si, ci)}k×H×W

i=1 , where µiR3 is
the center of the Gaussian in R3, αi ∈ [0, 1] is the opacity,
si ∈ R3 is the scales of the Gaussians, θi ∈ SO(3) is the
rotation of the Gaussian represented as a quaternion (R4),
and ci is a set of spherical harmonics coefficients represent-
ing directional varying color of the gaussian. In our model,
we constrain the prediction to k Gaussians per pixel, and in
our experiments we set k = 1.

To transfer knowledge from large-scale pretraining, we
base our architecture on DepthAnythingV2 (DAV2) [17]
and parameterize our model f as f = dw(lϕ(x)), com-
prising a decoder head dw built on top of a ViT backbone
lϕ. Following prior work, we assume a pinhole camera
model for the input image with known focal length, which
allows us to unproject depth maps predicted by DAV2’s de-
coder head into a 3D point cloud. We extend the depth de-
coder head of DAV2 by adding additional channels to its fi-
nal convolution layer for predicting {δi, αi, θi, si, ci}H×W

i=1 .
Specifically, δi ∈ R3 is added to the point cloud obtained
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Figure 2. Novel view renders of Image2GS outputs, trained with vs without masking.

Table 1. Comparing Image2GS trained with masking versus without masking on RealEstate10K under different target view settings.

Input frame 5 frames 10 frames U [−30, 30] frames
Setting Model PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

3D Completion
No mask 32.72 0.943 0.095 26.96 0.855 0.209 24.40 0.813 0.277 24.50 0.802 0.225
With mask 42.57 0.993 0.005 28.02 0.878 0.061 24.57 0.820 0.105 25.30 0.827 0.112

3D Lifting
No mask 32.72 0.943 - 33.60 0.919 - 31.35 0.895 - 32.20 0.902 -
With mask 42.57 0.993 - 34.84 0.935 - 31.95 0.908 - 33.05 0.915 -

Table 2. Image2GS shows state-of-the-art in-domain performance
on RealEstate10k on small, medium and large baseline ranges.
Performance of prior methods are taken from [10].

5 frames 10 frames U [−30, 30] frames
Model PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SV-MPI [14] 27.10 0.870 - 24.40 0.812 - 23.52 0.785 -
BTS [16] - - - - - - 24.00 0.755 0.194
Splatter Image [11] 28.15 0.894 0.110 25.34 0.842 0.144 24.15 0.810 0.177
MINE [5] 28.45 0.897 0.111 25.89 0.850 0.150 24.75 0.820 0.179
Flash3D [10] 28.46 0.899 0.100 25.94 0.857 0.133 24.93 0.833 0.160

Image2GS no masking 26.97 0.855 0.158 24.40 0.813 0.205 24.50 0.802 0.219
Image2GS 28.02 0.878 0.061 24.57 0.820 0.105 25.30 0.827 0.112

by unprojecting depth at pixel i to obtain µi. We initialize
dw and lϕ with parameters of DAV2 where possible, and the
additional channels in dw from scratch.

3.2. Dataset Preparation

Starting from a multiview image dataset D = {S1, . . . , Sn}
consisting of n scenes, where each scene S = {(xi, ci)}ki=1

contains a set of images x and corresponding camera poses
ci, we want to compute masks mi→j for each pair of images
i, j in S such that ∀u, v ∈ [1, H]× [1,W ], xj [u, v] is visible
from xi if mi→j [u, v] = 1, otherwise mi→j [u, v] = 0. A

possible way to compute mi→j would be to use monocular
depth prediction to predict relative depth maps for each im-
age, and then use key points obtained in SfM to align the
scale of these depth maps across images. However, initial
experiments found this process to be quite fragile in cases of
large perspective changes, and hence we opt to directly op-
timize 3D Gaussian splats for each scene to obtain a dataset
of 3D Gaussian scenes G = {G1, . . . , Gn}. Following [4],
we optimize each scene for 30000 iterations with default
settings supplied by [18], with the exception of reducing the
3D scale threshold for duplication and pruning to 0.002 and
0.02 respectively, due to many scenes in the dataset only
occupying a corner of the scene (hence smaller sizes) after
scene scale normalization.

3.3. Model Training

We train Image2GS through masked novel view prediction.
Each datapoint during training consists of a pair of input
image xinput and target image xtarget from the same scene,
the camera transformation matrix from the input view to
the target view K, and a mask M ∈ [0, 1]H×W indicating
the visibility of each pixel location in target view from the
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input view. First, the model predicts G = dw(lϕ(x)) given
input x. Then, the predicted image x̂target = Splat(G,K)
is rendered from G (implemented in gsplat[18]). Lastly,
the loss is computed between x̂target and xtarget, with the
mask M providing weights per pixel. In this subsection,
we detail how the mask is obtained from pretrained per-
scene Gaussian splats, and how the mask is used in loss
computation.

3.3.1 Obstruction Masking via projection

We project the per-scene Gaussian splats Gi ∈ G in the
input view and the target view to obtain mean depth maps
Dinput and Dtarget. We then re-project Dtarget to the in-
put view1 and compare with Dinput to determine whether
each pixel in the target view is visible in the input view. We
apply a scaled and shifted sigmoid activation to the differ-
ence in depth to obtain the soft mask: M = σ(−3|Dinput−
Dtarget| − 0.05).

3.3.2 Loss formulation

We utilize the obstruction mask to train Image2GS with the
pixel-based L2 loss and the feature-based LPIPS loss. For
the L2 loss, the mask is multiplied pixel-wise to the L2
difference between the rendered image in the target view
and the target image. For the LPIPs loss, early experiments
found that directly applying the mask to the rendered and
target images resulted in artifacts. Instead, we compute the
proportion of unobstructed areas in the target view and mul-
tiply it with the LPIPS loss of the entire image. These loss
functions are combined as follows:

Ltotal = αL2||M · (xtarget − x̂target)||22

+ αLPIPS
Σi,jMi,j

H ×W
LPIPS(xtarget, x̂target),

with αL2 and αLPIPS set to 1.0 and 0.1 respectively.

4. Experiments
Experiment settings We use the vitb backbone from
DepthAnythingV2 for all of our experiments. We train the
model on the RealEstate10K[20] dataset, which contains
videos of mostly static indoor scenes captured in real-estate
sales videos. We use the training and testing splits provided
with RealEstate10K. The model is trained for 300,000 steps
with a batch size of 32 using the Adam optimizer with a
learning rate 5 × 10−5 for the decoder head, reduced by a
factor of 10 for the backbone.

4.1. Effectiveness of Masking

First, we establish the effect of obstruction masking during
training in both 3D lifting and 3D completion. We quan-

1by projecting to 3D and unprojecting to the input view

tify the quality of 3D lifting through masked PSNR and
SSIM. For each input in the test set, we evaluate these met-
rics on four sets of target views: the original input view, a
novel view 5 frames into the future/past, a novel view 10
frames into the future/past, and a novel view sampled uni-
formly within a 30 frame window extending from the input
view. We opt not to evaluate LPIPS values as it tend to
behave erratically when masking is applied to the rendered
and generated images. To evaluate 3D completion, we use
the standard PSNR, SSIM, and LPIPS metrics on full novel
view images. In Table 1, we find that Image2GS trained
with masking significantly outperforms the baseline in 3D
lifting and 3D completion metrics. Of particular significant
improvement is that Image2GS achieves near perfect recon-
struction of the input view, showing a near 10 dB improve-
ment in PSNR over the baseline, and over 2× reduction in
LPIPS across all views.

We show several results of our masked model and no-
mask model for qualitative comparison in Figure 2. Train-
ing with obstruction masking significantly reduces artifacts
on foreground objects with large perspective changes. The
reconstruction image with the masked model is also sharper
(e.g., the cage of the cradle in the top left example and the
slats of the chair in the bottom left example).

4.2. Comparison to SotA 3D reconstruction Models

In Table 2, we report the performance of Image2GS in the
context of current state-of-art models in feed-forward 3D
reconstruction. Following standard protocol[5, 10], we per-
form a 5% border crop of the image during evaluation. We
find that Image2GS is competitive with other SotA methods
in PSNR and SSIM, and outperforms in LPIPS. We hypoth-
esize that this is due to our evaluation being performed at
higher resolution than baselines (518 × 518 pixels versus
384 × 256 pixels), which is disadvantageous to our PSNR
and SSIM numbers. Despite being trained for 3D lifting,
Image2GS is competitive with purpose-trained 3D recon-
struction models on the reconstruction task.

5. Conclusion

In this paper, we showed that in a controlled-setting, a dis-
criminative feed-forward image to GS model training on
image-to-3D lifting achieved better performance by than
that trained on image-to-3D completion in both image-to-
3D lifting and image-to-3D completion tasks. Furthermore,
we found that the lifting model is competitive with state-of-
art 3D reconstruction models. We argue that this shows that
these discriminative 3D reconstruction models struggle to
model and learn meaningful content in obstructed regions,
therefore they do not benefit from training on the full 3D
reconstruction task.
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