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Abstract

Zero-shot diffusion classifiers have emerged to repurpose
diffusion models for discriminative tasks, but these stud-
ies are limited and inconclusive. Here, we evaluate diffu-
sion classifiers on a wide range of compositional tasks. We
further introduce SELF-BENCH, a diagnostic benchmark of
diffusion-generated images, and reveal the importance of
image domain for classification performance. Finally, we
explore the importance of low-shot timestep weighting and
uncover a relationship between domain gap and timestep
sensitivity. Our study spans three Stable Diffusion mod-
els (SD 1.5, 2.0, and 3-m), 10 datasets, and over 30 tasks,
showing that diffusion classifiers understand composition-
ality—under the right conditions. Code and datasets are
available at https://github.com/eugene6923/
Diffusion-Classifiers-Compositionality .

1. Introduction
Discriminatively trained models like CLIP [19] often strug-
gle with word order, spatial relationships, and composi-
tional reasoning [7, 25, 27]. Diffusion models, trained
with dense pixel-level supervision, may be less prone to
such issues, prompting the question: can they outper-
form CLIP on compositional discrimination tasks? Recent
work on diffusion classifiers [2, 5, 13, 14] shows promis-
ing results—especially on compositional benchmarks like
Winoground [24]—leading us to posit Hypothesis 1 (H1):
Diffusion models’ discriminative compositional abilities
are better than CLIP’s.

However, despite strong compositional generative abil-
ity [4, 8], newer diffusion models like Stable Diffusion 3-
medium (SD3-m) [3] underperform in discriminative ac-
curacy compared to earlier versions in our analysis, sug-
gesting a disconnect between generation and discrimina-
tion. We hypothesize this is due to domain-specific bi-
ases and style mismatches between training and evaluation
datasets. Thus, Hypothesis 2 (H2) posits that Diffusion
models understand (through classification) what they gen-
erate. Further, because diffusion models generate images
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Figure 1. SELF-BENCH. (i) Using Geneval’s prompts from six
categories, generate images from random noise. Filter failed im-
ages. (ii) For each image, create discriminative tasks within its
category using the prompts from the generation process.

progressively over timesteps [15], different tasks may ben-
efit from leveraging different noise levels. This motivates
Hypothesis 3 (H3): The domain gap can be mitigated by
the timestep weighting. We investigate these hypotheses
via (1) an evaluation across ten compositional benchmarks,
encompassing 33 sub-tasks within four categories: Object,
Attribute, Position, and Counting, (2) a diagnostic dataset
(SELF-BENCH) to probe domain similarity effects, and (3)
a low-shot timestep-weight optimization for a specific task.

2. Methodology
We begin by discussing the prerequisites for diffusion clas-
sifiers and learning an optimal timestep weighting func-
tion. Next, we discuss our method for turning Stable Dif-
fusion 3 [3] into a classifier—a first attempt to the best of
our knowledge. Last, we outline the collection of SELF-
BENCH, our domain-diagnostic dataset.

2.1. Preliminaries
Diffusion Classfiers Given DN =
{(x1, c1), . . . , (xn, cN )}, a dataset of N images, where
each image xi ∈ RH×W×3 is labeled with one of K
classes, we aim to learn a classifier that can effectively
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handle compositional classification tasks. In practice, we
work with latent representations z ∈ Rd by encoding the
images using a pretrained autoencoder model. Diffusion
models [6, 23] are generative models trained to reverse a
noise process in latent space z, conditioned on text c, via
denoising loss L(z, c). This objective approximates the
ELBO of p(z|y), enabling classification by selecting the
label yk that maximizes log p(z|y = yk), estimated via the
diffusion loss. Diffusion classifiers [2, 13, 14] use this loss
as a classification objective, and we follow this approach
for SD1.5 and SD2.0 [21].
Learning the weighting function. In diffusion models, dif-
ferent timesteps capture varying levels of information [15].
This hierarchical information processing is crucial for com-
positional tasks, where both global structure (e.g., object
relationships) and local details (e.g., attributes) matter. Re-
cently, [2] has explored universal timestep weighting in
discriminative (yet non-compositional) settings. While we
adopt several components from their approach, our set-
ting and low-shot smoothing strategy differ. They rely on
computationally expensive, high-variance classification es-
timates. For instance, they assume 100 trials for a single
image-text pair. In contrast, we use fixed timesteps and
noise to reduce variance in prediction [14] when computing
the reconstruction target. In the low-shot learning setting
(5% of the full training set), we use a p-degree polynomial
wt =

∑p
i=0 ait

i, t ∈ S0 to enforce smoothness in order
to prevent overfitting.

2.2. SD3-m as a classifier
SD3-m is a rectified flow model [17] trained with a condi-
tional flow matching (CFM) loss [16], which differs from
the standard diffusion objectives used in SD1.5 and SD2.0.
As a result, we cannot directly apply the same classifier ob-
jective used in earlier versions. By reparameterizing the
CFM objective as a noise-prediction loss (see, e.g., [3]), we
can obtain

LRF(x0) = Et,ϵ[wt ∥ϵΘ(zt, t, c)− ϵ∥2] (1)

Using this formulation, we can use SD3 as classifiers, de-
spite its different underlying architecture. The only dif-
ference lies in the weighting function wt, which for SD3
follows a logit-normal distribution rather than the uniform
weighting used in SD1.5/2.0. However, we empirically find
that uniform weighting performs better for classification.

2.3. Self-Bench
To isolate image domain effects, we introduce SELF-
BENCH, a benchmark for evaluating diffusion classifiers
across in-domain vs. out-of-domain settings. We assume
that if a diffusion model can generate certain images, it
should also be able to discriminate them. Thus, we define

Table 1. SELF-BENCH Statistics: For each task, we show the
number of images in Full (F) and Correct (C) sets.

Task Single Obj. Two Obj. Colors Color Attrib. Position Counting

Filter F C F C F C F C F C F C

SD1.5 320 271 396 105 376 219 400 18 400 6 320 98
SD2.0 320 271 396 129 376 263 400 36 400 19 320 111
SD3-m 320 314 396 306 376 314 400 252 400 113 320 230

Total 960 856 1188 540 1128 796 1200 306 1200 138 960 439

Table 2. Categorization of compositional benchmarks. For
EQBench and Vismin, an official subset is used.

Category Datasets

Attribute

Aro (Attribute) [27] , SugarCrepe (Attribute) [7]
COLA (Multi Object) [20]
EQBench (EQ-Kubric Attribute, EQ-SD) [26]
MMVP (Color) [25], Vismin (Attribute) awal2024vismin
CLEVR (pair binding size & color) [10]
CLEVR (recognition color & shape) [10]
CLEVR ( binding color shape & shape color) [10]
Ours - SELF-BENCH (Colors, Color Attribution)

Object
Winoground (Object) [24] , SugarCrepe (Object) [7]
Vismin (Object) [1]
Ours - SELF-BENCH (Single Object, Two Objects)

Position (Spatial Relation)

WhatsUp (WhatsUp A & B) [11]
WhatsUp (COCO-spatial & GQA-spatial one & two) [11]
SPEC (Absolute Spatial, Relative Spatial) [18]
EQBench (Location) [26] , Vismin (Relation) [1]
CLEVR (spatial) [10]
MMVP (Spatial, Orientation, Perspective) [25]
Ours - SELF-BENCH (Position)

Counting
SPEC (Count) [18] , EQBench (EQ-Kubric Counting) [26]
Vismin (Counting) [1]
Ours - SELF-BENCH (Counting)

in-domain as data self-generated by the model, and cross-
domain (:=out-of-domain) as images generated by another
diffusion model.

To build SELF-BENCH (Fig. 1), we use prompts from
Geneval [4] to generate images. From all the generated im-
ages (Full), we manually filter out failures (Tab. 1) and
retain only the Correct ones. For each image, we cre-
ate discriminative tasks by pairing it with one matching and
multiple non-matching prompts from its category.

3. Experiments
3.1. Implementation Details

Benchmarks. Tab. 2 presents the benchmarks used in our
study, categorized into Attribute, Object, Position, Count-
ing, including our SELF-BENCH dataset, see Sec. 2.3.
Baselines. For SD1.5 and SD2.0 [21], we use the Euler Dis-
crete scheduler [12] and uniformly sample the timesteps.
For SD3-m [3], we use Flow Matching Euler Discrete [3]
scheduler for flow matching diffusions. We sample 30
timesteps from each model uniformly, following [5]. We
use five different versions of CLIP models: RN50x64, ViT-
B/32, ViT/L14 [19], ViT/H14, and ViT/G14 [9].
3.2. Scaling evaluation to ten benchmarks
We hypothesize that diffusion models are generally effec-
tive at compositional tasks and should outperform CLIP in
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Figure 2. Compositional generalization. The bar represents the
average classification accuracies across all tasks within each cat-
egory. Notably, in the Position and Attribute categories, diffu-
sion models outperform CLIP. However, CLIP generally achieves
higher overall performance compared to Stable Diffusion models.
Additionally, SD3-m does not outperform other Stable Diffusion
models in most benchmarks, except in the Position category.
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Figure 3. Self-Bench: In-domain performance. (Top three plots)
Each row represents the classification accuracy of a diffusion clas-
sifier from a specific SD model when evaluated on its own gen-
erated data. (Bottom) A positive correlation is observed between
generative and discriminative performance. Left axis: discrimina-
tion; right axis: generation accuracy.

such settings (H1). To test this, we conduct a comprehen-
sive evaluation across ten compositional benchmarks cov-
ering various tasks. Each task belongs to one of four cate-
gories: Object, Attribute, Position, and Counting. In total,
we analyze 33 sub-tasks in our main study.

Fig. 2 shows the average performance of diffusion clas-
sifiers on the compositional benchmarks. For the Position
task, SD3-m performs the best compared to other diffu-
sion models and CLIP models. However, in other tasks,
CLIP models usually show better performance than diffu-
sion classifiers. Thus, our hypothesis is only partially sup-
ported, i.e., trends across datasets or tasks vary. This finding
contrasts with previous work [2, 14], which reported more
consistent advantages for diffusion classifiers. Among dif-
fusion classifiers, SD3-m is not the best; often, SD1.5 or
SD2.0 models show better results.

3.3. Studying domain effects via Self-Bench
To understand why generative models struggle with certain
datasets or tasks, we hypothesise that diffusion models un-
derstand (through classification) what they generate. (H2).
We analyze models’ performance on their own generations
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Figure 4. SELF-BENCH: Cross-domain performance degra-
dation. The bar represents the average drop rate between in-
domain and cross-domain evaluation, averaged over different
cross-domain settings. We observe significant accuracy drops.
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Figure 5. Timestep reweighting helps address the do-
main problem in real-world benchmarks. Low-shot timestep
reweighting is effective in real-world benchmarks. Reweighted
models consistently outperform the baseline; the gains are most
pronounced for the SD3-m model.

(“in-domain”) and on generations of other models (“cross-
domain”) using our SELF-BENCH.1

Fig. 3 (top three rows) shows that diffusion classifiers
perform well in-domain, but their accuracy drops signifi-
cantly in cross-domain settings shown in Fig. 4, highlight-
ing the strong influence of domain shifts. The correlation
coefficient between generation and in-domain discrimina-
tion accuracy is 0.77 (Fig. 3 bottom part). This shows that
generation accuracy and discrimination accuracy are posi-
tively correlated in in-domain settings, which is opposite to
our observations in Sec. 3.2.

3.4. Studying timestep weighting effects
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Figure 6. Timestep
Weighting and Domain
Gap. CLIP distances be-
tween real-world datasets
and SELF-BENCH gener-
ations, and corresponding
accuracy gains from
timestep weighting.

We hypothesize that the short-
comings of diffusion classifiers
arise from how information is
processed across timesteps dur-
ing both generation and classi-
fication, leading to a larger do-
main gap (H3). Here, we ex-
amine how low-shot timestep
weighting contributes to classifi-
cation performance.
Reweighted SD3 performs
the best in real-world bench-
marks. We find that timestep
reweighting is an effective
method to enhance the perfor-
mance of diffusion classifiers in cross-domain scenarios
(see Fig. 5, top). Notably, learning timestep weights
requires only a small amount of data (5% of the dataset)

1We show the average performance of a Single Object and Two Ob-
jects, referred to as Object, and Colors and Color Attribution, referred to
as Attribute.



and provides significant advantages that transfer well to
low-data settings (see Fig. 5, bottom). Both results show
that this approach particularly benefits SD3-m.
Timestep weighting helps mitigate the domain gap.
Since timestep weighting significantly boosts SD3-m on
real-world tasks, we ask: Does it help mitigate domain gap?
To explore this, we compare two image sets per task: (i) the
original real-world dataset (used in Fig. 5) and (ii) synthetic
images generated using the same prompts. Although both
target the same task, they differ in visual domain. Using
CLIP (ViT-B/32)[19], we compute the L2 distance between
average embeddings from 50 randomly sampled images in
each set to estimate domain gap2. As shown in Fig. 6,
SD3 shows a clear correlation: larger domain gaps corre-
spond to greater gains from timestep weighting. This trend
does not hold for SD1 or SD2. We hypothesize that SD1.5
and SD2.0 perform near-optimally with uniform weighting,
while SD3-m may suppress certain timesteps due to train-
ing on a smaller, more filtered, and human-aligned dataset
than LAION-5B [22].

4. Conclusion
This paper investigates diffusion classifiers and their com-
positional discriminative abilities. In a broad evaluation,
we find that they are indeed capable but in limited cases
(e.g., Position). We introduce SELF-BENCH, a dataset of
diffusion-generated images, revealing domain shift effects,
and, lastly, propose a simple task-specific low-shot timestep
weighting strategy to mitigate the domain gap between dif-
fusion model’s generation and real-world test dataset.
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