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Abstract

Object pose estimation from a single view remains a chal-
lenging problem. In particular, partial observability, oc-
clusions, and object symmetries eventually result in pose
ambiguity. To account for this multimodality, this work pro-
poses training a diffusion-based generative model for 6D
object pose estimation. During inference, the trained gen-
erative model allows for sampling multiple particles, i.e.,
pose hypotheses. To distill this information into a single
pose estimate, we propose two novel and effective pose se-
lection strategies that do not require any additional training
or computationally intensive operations. Moreover, while
many existing methods for pose estimation primarily focus
on the image domain and only incorporate depth informa-
tion for final pose refinement, our model solely operates on
point cloud data. The model leverages recent advancements
in point cloud processing through an SE(3)-equivariant la-
tent space that forms the basis for the selection strategies
and improved inference times. Experimental results demon-
strate the effectiveness of our design choices and competitive
performance on the Linemod dataset.

1. Introduction
Object pose estimation is a fundamental problem in many ap-
plications, including Robotics [18, 25], Autonomous Driving
[6], and Virtual Reality [14]. Despite significant advances
in recent years, mainly attributed to learning-based methods,
the task remains challenging [9], especially when only a
single scene view is available. A single perspective might
hide distinct object characteristics, and partial observability
leads to occlusion that intensifies with the level of clutter
[10, 28]. Partial observability, occlusion, and symmetric
objects eventually result in pose ambiguity and multiple
pose hypotheses fitting the observation. To deal with this
ambiguity, this work explores leveraging diffusion models
for particle-based object pose estimation. Generative mod-
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els [12, 21, 23, 24] have been shown to excel in learning
multi-modal distributions and, therefore, hold promise in ad-
dressing the aforementioned challenges. Additionally, many
existing methods for 6D object pose estimation primarily
operate in the image domain [16, 20, 28] and only incorpo-
rate depth in the final refinement [13]. Herein, we directly
work in the 3D point cloud domain, aligning the inherent
three-dimensional nature of both the scene and its objects.
Moreover, recent advancements in feature extraction from
point clouds have opened up exciting possibilities for en-
hancing pose estimation from point clouds [4, 17, 27]. In
particular, we exploit equivariant feature spaces to obtain
more expressive encodings and improved inference times.
Lastly, while particle-based approaches to pose estimation
naturally yield multiple pose hypotheses, it is also crucial to
rank the individual estimates and come up with a final pose
estimate. To this end, we present and compare two novel,
simple, but effective particle selection strategies.

This work therefore contributes a novel, particle-based
approach for (a) 6D Pose Estimation from Point Clouds.
Through leveraging information about the object’s 3D model,
the inference process of the diffusion-based generative model
iteratively aligns the model with the observation. More-
over, the underlying generative model naturally captures the
multimodality that arises from partial observability. This
work also demonstrates effectiveness of (b) utilizing SE(3)-
equivariant Vector Neurons. We leverage vector neurons
(VNs) to build a latent space that is equivariant to SE(3)
transformations and yields expressive point cloud encodings.
This property enables a substantial inference time improve-
ment with small sacrifices in accuracy. Lastly, this work
introduces (c) Novel Pose Selection Methods for decid-
ing upon a single 6D pose from multiple pose hypotheses
generated with the model. Both strategies show high suc-
cess rates w.r.t. selecting particles resulting in an accurate
pose estimation, are computationally efficient, and do not
necessitate additional training. We evaluate our approach on
the Linemod dataset [8], demonstrate its competitive perfor-
mance, and the effectiveness of its individual components.
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Figure 1. Noise Conditioned Score Model (NCSM) architecture
for learning 6D pose distributions. The object point cloud xo is
sampled from a 3D model of the object whose pose we want to
determine in the scene. Given a specific pose H ∈ SE(3) and
its normal vectors no the object point cloud is partially rendered.
Scene point cloud xs and partial rendered object point cloud xs′

o are
embedded through a shared encoder that leverages vector neurons
(VNs). Finally, the scene latent zs and object latent zo are flattened
and together with an encoded time step and the respective pose H
fed through a Feature Encoder Fθ and Decoder Dθ to predict a
score s ∈ R6.

2. Method

We propose learning a point-cloud-based diffusion model
for 6D pose estimation. Herein, a pose H is represented as
an element of the group SE(3), with rotation R ∈ SO(3),
and translation t ∈ R3. As observation, we consider a single
depth image of the scene. Additionally, we assume to have
access to the 3D object model.

2.1. Model Architecture

Our proposed model architecture is shown in Fig. 1. The
network receives four inputs: (i) The depth image of a partial
scene view together with a segmentation mask which is con-
verted to point-cloud form xs ∈ RN×3. (ii) A current pose
hypothesis H ∈ SE(3), which, is to be refined based on the
model’s output. (iii) The time step t ∈ [0, 1] that governs
the diffusion process. (iv) A set of points sampled from the
fully observable 3D object model xo ∈ RM×3 along with
their normal vectors no ∈ RM×3. Importantly, the object
model’s point cloud is pre-processed by a partial rendering
module [15] to account for the fact that the scene is only
partially observable. Both point clouds, i.e., the scene point
cloud and the object point cloud (after passing the partial
rendering module) are processed individually by a shared
vector neural network (VNN) encoder to obtain the respec-
tive SE(3)-equivariant latent representations zs ∈ RD×3

and zo ∈ RD×3 with dimensions D. Subsequently, the
latents are flattened and concatenated with the rigid trans-
formation H , and the time encoding [25] and passed to a
Feature Encoder Fθ and Decoder Dθ to predict the score
s ∈ R6 for updating the current pose estimate. For more
information, see [15].

2.2. Training and Inference

We employ a diffusion-based approach for pose estimation
and leverage a stochastic differentiable equation (SDE) for
the diffusion process. Through exploiting the proposed
SE(3)-equivariant latent space, we additionally present a
more time-efficient latent-space inference process.

Diffusion. The object poses H are diffused along infinite
noise scales [24]. In our case, the SDE dx=σtdw, t∈[0, 1]
governs the diffusion process, with w being the standard
Wiener process [24]. Practically, we sample from the per-
turbed distribution qt(Ĥ) through first sampling a pose
from the data distribution H ∼ pdata(H) and compos-
ing it with a white noise vector ϵ ∈ R6 sampled from the
respective noise scale distribution ϵ ∼ N (0, var(σ, t)I6)
[25]. Thus, the noise perturbed pose equates to Ĥ =
HExpmap(ϵ). We therefore follow [19, 25] in that we
work within the vector space R6 instead of the Lie alge-
bra. For moving the elements between Lie Group and
vector space, we rely on the logarithmic and exponential
maps, i.e., Logmap : SE(3) −→ R6 and Expmap : R6 −→ SE(3) re-
spectively [19].

Training. In line with [25], our proposed model is trained
using denoising score matching (DSM) with loss term

L = Et∈[ϵ,1]Eqt(H,Ĥ)

[∥∥∥sθ(Ĥ, t)−∇Ĥ log(qt(Ĥ|H))
∥∥∥2
2

]
, (1)

with smallest time step (ϵ = 1e−5 in our case). We follow
[22] and rescale the output of the NCSM by 1/

√
var(σ, t).

Inference. For inferring an object pose estimate,
we deploy an inverse Langevin dynamics process, starting
from the largest time step t=1 and a random initial pose
H0 = Expmap(ϵ) sampled from ϵ ∼ N (0, var(σ, 1)I6).
Then follows a sequence of L equally spaced time steps
(ti)

L−1
i=0 , ti = (1 − (i/(L − 1))(1 − ϵ)) starting at

t0=1 and ending at tL−1=ϵ. At each time step we up-
date the pose following the Langevin dynamics process
H l+1 = Expmap(αlsθ(H l, tl) +

√
2αl0.01ϵ)H l, with

ϵ ∼ N (0, I6), the score estimate by our NCSM sθ(H l, tl)
and dynamic step size αl. In the final five iterations of the
inference process, this term is abolished leaving H l+1 =
Expmap(αlsθ(H l, tl))H l.

Observation-encoding during Inference. As shown
in Figure 1, our proposed architecture encodes the scene
and object point cloud individually. Since the scene point
cloud xs does not change during inference, we only need
to encode it once, i.e., zs = Pθ(xs). However, the object
point cloud and this its encoding change in each iteration
due to an update in the predicted pose. To facilitate a trade-
off between accuracy and inference speed we introduce a
hyperparameter k, which determines that the object point
cloud is encoded and re-rendered only in every kth iteration,
and in between, we solely rotate the object latent.



2.3. Pose Estimation through Particle Selection

The inference process (cf. Sec. 2.2) can be used to generate
multiple samples, i.e., a set of N pose hypotheses (particles)
H = {H1,H2, · · · ,HN}. To condense these hypotheses
to one pose prediction H∗, we introduce two techniques.

Selection By Score. The inference process
(cf. Sec. 2.2) generates a history of L score values
{s0, s1, · · · , sL−1} ∈ RL×6. As shown in [21], for
score matching in Euclidean Spaces, i.e., with qt(x̂|x) =
N (x̂|x, σt), the objective for score matching equates to
∇x̂log(qt(x̂|x)) = −(x̂ − x)2/σ2

t . For our case of score
matching in SE(3), the Gaussian is defined according
to qt(Ĥ|H,Σ) ∝ exp

(
−0.5

∥∥Logmap(H−1
µ H)

∥∥2
Σ−1

)
, cen-

tered around its mean H ∈ SE(3) and with covariance
matrix Σ ∈ R6×6 [3]. Therefore, for score matching in
SE(3), the score should match ∇Ĥ log(qt(Ĥ|H)) ∝
Logmap(H−1Ĥ), which essentially is a distance vector
within the vector space R6. From these derivations, it is
clear that the score, and in particular its 2-norm, i.e., ∥s∥2 is
an indicator of how close the current sample is to a sample
from the dataset. Therefore, as a first heuristic to rank the
particle-based pose hypotheses, we consider the last score
value, as for precise pose estimates it should be smaller.

Selection By Latent. The partially rendered object
point cloud and the cropped scene point cloud are encoded
with the same point cloud encoder Pθ. Therefore, this strat-
egy follows the geometric intuition, that the pose prediction
quality correlates with the proximity of the object latent
zo ∈ RD×3 to the scene latent zs ∈ RD×3 given a spe-
cific pose H ∈ SE(3). The output of the encoder are D
3-dimensional points, which we will compare in terms of
euclidean distance. In particular, the scene latent consists
of the vectors zs = {(0)zs,

(1)zs, · · · , (D−1)zs}. The ob-
ject latent on the other hand varies along the N different
particles. To formalize this selection strategy we define a
proximity function lprox: RD×3 → R, lprox(zo, zs) =∑D−1

i=0

∥∥(i)zs − (i)zo

∥∥
2

that can be used to determine the
proximity of the N pose hypotheses. Under this prediction
strategy, the final predicted pose is the particle that mini-
mizes this distance.

3. Experiments
We evaluate our 6D pose estimation method on the Linemod
dataset [8], following [1, 2, 11, 15, 20, 26]. Accuracy is
measured using ADD and ADD-S for symmetric objects
[7] with correctness defined as ADD < 10% of the object’s
diameter. Our model has a 282-dimensional latent space
(D = 94), a Feature Encoder Fθ with 7 fully connected
(FC) layers (size 512, 20% dropout), and a Decoder Dθ

with 3 FC layers (size 256) outputting the score value s ∈
R6. Object point clouds (1024 points) and normal vectors
are sampled from 3D face centroids and normals, while
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Figure 2. Accuracy Curve with AUC values for all selection meth-
ods for a model trained and tested on all objects. Single particle
sampling, i.e. eliminating the need for any selection strategy yields
the lower bound and selection by ground truth information the up-
per bound.

scene point clouds (1024 points) are cropped based on the
segmentation mask of the visible object part. We train a
single model for all 13 objects over 3500 epochs. Training
takes 80 hours on an NVIDIA V100 GPU (32GB). Standard
inference uses 100 Langevin iterations with 20 sampled
particles, rendering object point clouds every iteration (k =
1). No synthetic data is used.

Particle Selection Strategies. To evaluate the particle
selection strategies (Sec. 2.3), we consider two additional
baseline strategies: 1) selection by ground truth (gt), and
2) single particle. While the selection by ground truth se-
lects the pose hypothesis (particle) with the lowest average
distance metric (ADD) to form an upper bound, the sin-
gle particle baseline naturally eliminates the need for any
particle selection strategy since it corresponds to inferring
only a single pose using our proposed model and thus rep-
resents a lower bound. The results in Fig. 2 show that both
our proposed selection strategies lead to comparable results,
although the selection by score slightly outperforms the se-
lection by latent with an accuracy (ACC-0.1) of 97.4% vs.
95.6% and a AUC of 81.8 vs. 80.0. Importantly, they are
both much closer to the upper bound than to the lower bound
and lead to accurate pose predictions. In ≈72% of the cases,
the predicted pose by score is among the top 5 particles (com-
pared to ≈60% for selection by latent). This leads to the
conclusion that our particle selection strategies are effective
in reliably selecting a pose amongst the best pose candidates
and that inferring multiple pose candidates is crucial for
obtaining good performance.

Model Performance Comparison. A comparison of our
model’s performance (selection by score & partial rendering)
against other approaches on the Linemod dataset is provided
in Tab. 1. It’s important to note that our evaluation, as well
as the evaluation for CloudAAE [5] was conducted with the
advantage of having access to the ground truth segmentation



Approach PVNet
[16]

PoseCNN
+ DeepIm
[13, 28]

DenseFusion
[26]

HybridPose
[20]

CloudAAE
+ ICP [5]

Ours

Modality RGB RGB RGB-D RGB D D
ape 43.6 77.0 92.3 63.1 92.5 92.3
bench v. 99.9 97.5 93.2 99.9 91.8 99.7
camera 86.9 93.5 94.4 90.4 88.9 94.0
can 95.5 96.5 93.1 98.5 96.4 98.7
cat 79.3 82.1 96.5 89.4 97.5 97.5
driller 96.4 95.0 87.0 98.5 99.0 98.6
duck 52.6 77.7 92.3 65.0 92.7 92.2
eggbox* 99.2 97.1 99.8 100.0 99.8 100.0
glue* 95.7 99.4 100.0 98.8 99.0 99.9
hole p. 81.9 52.8 92.1 89.7 93.7 96.4
iron 98.9 98.3 97.0 100.0 95.9 99.2
lamp 99.3 97.5 95.3 99.5 96.6 98.6
phone 92.4 87.7 92.8 84.9 97.4 98.4
MEAN 86.3 88.6 94.3 91.3 95.5 97.4

Table 1. Evaluation and comparison of our approach (using selec-
tion by score) with other state-of-the-art approaches for 6D pose
estimation on the Linemod dataset. The reported metric is the
ACC-0.1, i.e., accuracy, and colors indicate the three best ranked
methods - blue indicates the best, orange the second best and violet
the third best. * denotes symmetric objects.

masks for the objects in the test set. Comapred to CloudAAE,
our approach yields an increased mean performance of al-
most 2.0 percentage points. However, this assumption is not
made by the other methods listed in Tab. 1. Keeping this
advantage in mind, we surpass the performance of DenseFu-
sion [26] by 3.1 percentage points and the other baselines
even more significantly.

Partial vs. Full Object Rendering. One design choice
of our approach is to only feed the front facing points into the
point cloud encoder to account for partial observability. An
alternative would be to use the full transformed object model
instead. This experiment, therefore, compares two models.
We find that for both particle selection strategies, partial
rendering leads to superior results. While for selection by
score the difference in accuracy is 4.1 percentage points
(97.4% vs. 93.3%), selection by latent exhibits a larger
discrepancy of 6.7 percentage points (95.6% vs. 88.9%).

SE(3)- vs. SO(3)-Equivariant Latent. By aligning the
cropped scene point cloud through centering before it enters
the encoder and then reversing this operation in the latent
space, we obtain a SE(3)-equivariant latent representation.
Omitting the centering and its reversal yields an only SO(3)-
equivariant latent. Deploying an SE(3)-equivariant latent
improves the performance for both selection strategies. For
selection by score the accuracy drops by 9.2 percentage
points when using the SO(3)-equivariant latent (mean ac-
curacy of 97.4% vs. 88.2%). In the case of selection by
latent, the performance difference is more substantial. The
SO(3)-equivariant latent attains an accuracy of 52.0% com-
pared to 95.6% for its SE(3)-equivariant counterpart. This
discrepancy can be explained by the fact that the selection
by latent strategy relies on the assumption that the latent
representations of the object and scene are comparable.

Inference and Runtime Analysis. The inference process
encompasses various hyper-parameters. Here we investi-
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Figure 3. Relation between the rendering interval k, accuracy, and
inference runtime. The interval k controls how often the point
cloud is rendered and encoded during inference; in other iterations,
only the latent vector zo is transformed. Results are based on 100
iterations, 20 sampled particles, and the driller object.

gate the influence of the rendering interval k on the pose
estimation quality and the inference time. Experiments are
conducted on an NVIDIA A100 GPU with 40GB. The first
experiment considers the driller object and varying the render
interval k between 1 and 40. As shown in Fig. 3, rendering
the object point cloud every iteration yields an ACC-0.1 of
98.6% with an inference time of 4.41 s per pose prediction.
Increasing the render interval to 5 and 10 leads to a similar
accuracy while reducing the inference time to 1.04 s (−76%)
and 0.67 s (−85%). Recognizing this favorable trade-off
between inference time and accuracy at a rendering interval
of k = 10, we compare this runtime-efficient setting with
the default interval of k = 1 across all objects. Across all
objects, the higher rendering interval only results in a perfor-
mance decrease of −3%, while significantly improving the
inference time by 85%.

4. Conclusion

This work introduced a novel approach for 6D pose esti-
mation from single-perspective depth images. To account
for the fact that partial observability and symmetric objects
yield settings in which multiple pose hypotheses might fit
the observation well, this work proposed to train a diffusion-
based generative model for pose estimation. In terms of
model architecture, we incorporated recent advancements in
point cloud processing to obtain a SE(3)-equivariant latent
space. To decide upon a final pose estimate from multiple
hypotheses generated during inference, we introduced two
novel pose selection strategies. Our results demonstrated
that sampling multiple pose hypotheses and selecting one of
them is crucial and significantly outperforms solely inferring
a single pose using the trained generative model. Moreover,
the experiments underlined the importance of leveraging the
SE(3) equivariant latent space. In the future, it would be in-
teresting to extend our approach from object pose estimation
to object pose tracking.
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