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Abstract

We propose EscherNet++, a masked fine-tuned diffusion
model that can synthesize novel views of objects in a zero-
shot manner with amodal completion ability. Existing ap-
proaches utilize multiple stages and complex pipelines to
first hallucinate missing parts of the image and then per-
form novel view synthesis, which fail to consider cross-view
dependencies and require redundant storage and comput-
ing for separate stages. Instead, we apply masked fine-
tuning including input-level and feature-level masking to
enable an end-to-end model with the improved ability to
synthesize novel views and conduct amodal completion. In
addition, we empirically integrate our model with other
feed-forward image-to-mesh models without extra training
and achieve competitive results with reconstruction time de-
creased by 95%, thanks to its ability to synthesize arbi-
trary query views. Our method’s scalable nature further
enhances fast 3D reconstruction. Despite fine-tuning on a
smaller dataset and batch size, our method achieves state-
of-the-art results, improving PSNR by 3.9 and Volume IoU
by 0.28 on occluded tasks in 10-input settings, while also
generalizing to real-world occluded reconstruction.

1. Introduction
Novel view synthesis (NVS) of objects is an important
topic in computer vision due to its wide range of appli-
cations, including virtual and augmented reality [18, 26],
computer graphics [6], robotics [13, 42] and 3D reconstruc-
tion [11, 19, 23] . It involves generating new images of
an object from viewpoints that were not observed during
data capture, enabling more immersive and interactive ex-
periences. Recent progresses represented by nueral radi-
ance field (NeRF) [24], have achieved high-quality results
by modeling the scene as a continuous volumetric function
using a neural network. However NeRF and its following
works come with several limitations that hinder their practi-
cal application, including 1) slow training/rendering speeds,
2) limited extrapolation/few-shot/generalization ability and
3) inability to handle occlusion well.

Figure 1. Given occluded input views of any number, our uni-
fied model EscherNet++ is able to complete occluded views and
synthesize novel views simultaneously, without need for multi-
ple specialized models. Synthesized views can be queried from
any viewpoints, which allows instant integration with other feed-
forward 3D reconstruction models [39]. It can be generalizable to
unseen data such as real-world captures.

Various methods have been proposed to alleviate these
problems while maintaining the quality of the synthesis,
such as grid-based methods [25], point-based methods [16],
incorporation of learned prior knowledge [12, 40]. In ad-
dition, Diffusion methods [8, 29, 31], which are a group
of generative models previously used in content genera-
tion, began to gain popularity in NVS [10, 15, 17, 20–
22, 30, 34, 38, 41]. Among these methods, EscherNet [17]
stands out for its ability to generate high-quality consistent
views and support multiple inputs as the condition. Besides,
diffusion models have also been used in amodal completion
to deal with occlusion [1, 3, 27]; however, current amodal
completion models typically serve as a stand-alone model
and primarily focus on single-view context.

Departing from existing approaches that often treat these
tasks separately [3, 27], we ask ”Can these two problems
be solved with a more integrated solution?” Such a solu-
tion should be able to 1) leverage a shared understanding of
object semantics and geometry from the input views with
possible occlusions and 2) possess the ability to be opti-
mized collectively for both tasks. These requirements moti-
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Figure 2. The pipeline of EscherNet++. Our unified model enables simultaneous novel view synthesis and amodal completion. During
training, hierarchical masking—at both input and feature levels—helps the model learn complete geometry from occluded views while
improving robustness. During inference, our model not only supports commonly used overfitting approaches—such as NueS [36], which
iteratively refines geometry—but also seamlessly integrates with pre-trained feed-forward models like InstantMesh [39]. We empirically
find that this integration achieves competitive performance while significantly reducing computational time. Bottom right corner shows
input-level masking is applied. Silhouettes are extracted from rendered objects and overlayed on complete input views to get occluded
views paired with groundtruth.

vate the development of our propose method EscherNet++
as follows:
• We propose a unified diffusion-based network Escher-

Net++ as shown in Fig. 2, designed for occlusion-aware
novel view synthesis. It flexibly adapts to varying num-
bers of input and output views, extending the original task
for multi-view amodal completion—a challenging yet
underexplored task.

• Introduce an effective approach to enhance fast 3D re-
construction using pre-trained feed-forward models,
leveraging the scalability and consistency of our synthe-
sized novel views without requiring additional fine-tuning

• Our proposed work excels in extensive experiments on
NVS and 3D reconstruction, particularly under occlu-
sions, outperforming prior work by an average of 3.9
PSNR in occluded NVS tests and 0.28 Volume IoU in
occluded 3D reconstruction tests with 10-input settings.

2. Methodology
We introduce EscherNet++, detailed in this section. We
first introduce our masked fine-tuning approach in Sec. 2.1,
and our view-to-3D reconstruction method in Sec. 2.2. An
overview of the pipeline is illustrated in Fig. 2.

2.1. Masked Fine-Tuning
Built upon EscherNet, we aim to achieve an end-to-end
model that can synthesize novel views and complete the oc-

cluded regions in input views simultaneously. There are two
key aspects to consider when tackling the compound prob-
lem, 1) dataset acquisition and 2) training method.

Curated Dataset: A well-structured dataset is crucial
for training a model to handle the problem effectively. The
requirements on the dataset lead us to create a paired dataset
curated from Objaverse-1.0 [2].We employ silhouettes of
objects as masks to randomly overlay occlusions onto ob-
jects in the dataset, as shown in Fig. 2. Specifically,
we sampled single objects from then rendered Objaverse
dataset to extract their silhouettes. Then we group, rescale,
shift them to create various occlusions.

Input-Level & Feature-Level Masking: We fine-tune
the model using two techniques, input-level masking and
feature-level masking. Input level masking can be achieved
with the above curated dataset naturally. Similar to the
original training of Eschernet, we randomly choose three
input views with 50 percent chance of being partially oc-
cluded, the model learns to synthesize novel three other
complete views. In addition, inspired by previous works
[5, 7, 14, 37], we propose to further randomly mask the
encoded input feature maps to further improve the perfor-
mance, as shown in Sec. 3 by strengthening model’s ability
in overall comprehension of the object in semantics and in-
tricate structure details. We empirically found that 25 per-
cent is a suitable choice for feature-level masking probabil-
ity as shown in App. B. That is, around 1/4 of input data
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Figure 3. Visualization of synthesized views from different models with our OccNVS benchmark.

will be processed by random feature-level masking during
training.

2.2. Novel View Synthesis to 3D reconstruction
Reconstructing objects from synthesized novel views is a
crucial downstream task. Broadly, two main approaches ex-
ist: 1) Overfitting methods, where a model is trained per ob-
ject, and 2) Generalizable models, which learn a universal
3D representation applicable across objects with minimal
adaptation. We experiment with both methods and propose
a simple yet effective way to enhance a feed-forward gener-
alizable model in a training-free manner.

2.2.1. Overfitting Method
The prior work EscherNet opts to train separate NeuS
[36] models for each object, which is able to memorize
the details of a particular object by overfitting, leading to
highly accurate and detailed reconstruction. Such overfit-
ting method can yield high-quality reconstruction however
they usually involve extensive per-object training as shown
in Sec. 3.

2.2.2. Generalizable Method
There have been several feed-forward generalizable recon-
struction models available in recent years [9, 28, 32, 33,
39], designed to quickly infer 3D representations from
sparse inputs such as single view or a few views. We pick
one generalizable model, InstantMesh [39] for case study
in this paper. It is found InstantMesh performs worse when

given inputs from poses other than those used in their paper,
although their model design supports any input poses.

Target View Synthesis: Luckily, we can take advantage
of our model that can generate any view from any query
pose to generate preferred views for generalizable recon-
struction models. We further find that performance can be
elevated if more generated views can be provided to the re-
construction model. No additional training or extra infer-
ence time is introduced as we show in Sec. 3 and App. C.

3. Experiments
Experiments are conducted to compare our proposed
method EscherNet++ with other state-of-the-art methods.

Training & Test Settings: Objaverse-1.0 is used to train
our models. Specifically, a subset of 300K objects is sam-
pled from Objaverse-1.0 for faster fine-tuning and data-
efficient purposes. A small learning rate of 1 · 10−5 is used
for fine-tuning weights from the public checkpoint of Es-
cherNet. A batch size of 48 is adopted on each of 8 A40
GPUs, it takes around 3 days to complete 28K iterations.
4DoF object-centric setting is set for all experiments. We
evaluate all the models with two settings, one with com-
plete input views and one with randomly occluded views
with a new set of masks to simulate any possible occlusions
from query viewpoints. We term the occluded benchmark
OccNVS, including complete/occluded views from Google
Scanned Objects dataset (GSO) [4], RTMV and NeRF Syn-
thetic [24]. The structure of EscherNet++ and other settings
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Figure 4. Amodal complation results by different models on Occ-
NVS.

are kept the same as EscherNet.
We conduct three sets of experiments with OccNVS in

this section, including NVS, amodal completion and 3D re-
construction. Quantitative results can be found in App. A.

Results on Novel View Synthesis: Experiments in
Tab. 1 in occluded tests show that our model successfully
achieves the intended goal of synthesizing complete novel
views even with occlusion in input views, with seman-
tic accuracy and geometric consistency well maintained.
our model in tasks with occlusion significantly outperforms
baselines by improvement of at least 5 in PSNR for GSO in
all settings over EscherNet.

Results on Amodel Completion: We also compare the
amodel completion performance of our model with two
other recent models specifically designed for this task. As
shown in Fig. 4 and Tab. 2, our model stands out for its
distinct ability to consider multi-view reference in amodel
completion.

Results on 3D Reconstruction: We evaluate 3D recon-
struction quality across various models, normalizing mesh
outputs for comparison, with two image-to-3D reconstruc-
tion approaches: an overfitting method (NeuS [36]) and a
feed-forward model [39]. Qualitative and quantitative re-
sults are presented in Fig.5 and Tab.3. For our model,
36 synthesized views serve as inputs for NeuS-based re-
construction, while an additional 6 views are used for In-
stantMesh, totaling 42 views for enhanced reconstruction.

By synthesizing more consistent and precise views,
our model and EscherNet outperform prior methods when

Figure 5. Rendered meshes from 3D reconstruction by different
models on OccNVS benchmark. Note that a floater occurs in the
first example with InstantMesh.

paired with NeuS under both settings (Fig.5, Tab.3). Fur-
ther, it enables seamless integration with pre-trained feed-
forward 3D reconstruction models. We validate this by
integrating InstantMesh, achieving over a 10% increase
in volume IoU by providing more accurate views at the
same viewpoints at occluded settings, with reconstruction
time reduced by 95% while maintaining competitive per-
formance.

4. Conclusion

In this paper, we propose EscherNet++, a masked fine-tuned
diffusion model that can synthesize novel views of objects
in a zero-shot way with amodal completion ability. We find
that properly masked input images and input feature maps
can contribute to better performance of the model. In ad-
dition, it can be seamlessly integrated with other fast feed-
forward image-to-mesh models because of its flexible fea-
ture to synthesize any query views without the need for ex-
tra training, and the fast 3D reconstruction performance can
be further boosted by its scalable nature. Limitations of
the current work as well as future work can be found in
App. D.
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Supplementary Material

A. Quantitative Results in Experiment
This section presents the quantitative results in experiments
conducted in Sec. 3, with Tab. 1, Tab. 2, Tab. 3 summariz-
ing results on novel view synthesis, amodel completion and
3D reconstruction accordingly.

B. Ablation Study on Feature-Level Masking
In experiment, we empirically find the proper ratio for
feature-level masking. Consider a batch of feature maps
from the image encoder, its tenser shape is [b ∗ t, l, c], in
which b is the batch size of samples, t is number of input
views in each sample, l is the feature map area (number of
feature vectors associated with each input view) and c is the
feature dimension.

We start by masking all (100% of b ∗ t dimension) fea-
ture maps by half feature map area (50% of l) randomly
and the performance is sub-optimal. Then we gradually de-
crease the ratio on the second dimension by 25% (in b ∗ t
dimension), and finally found that 25 % is a proper ratio
for feature-level masking. That is, we report performance
of the model with 25% masked in b ∗ t dimension and 50%
masked in l dimension in training, as the representative re-
sults of feature-level masking.

We also attach the full tables for evaluating models with
OccNVS in the ablation study on feature-level masking. It
is found that feature-level masking with proper ratio can
improve overall performance including better understand-
ing of semantics from input views, better capture of intri-
cate structures. However, it will lead to sub-optimal perfor-
mance is too large ratio is picked, as shown is Fig. 6, Tab.
4, Tab. 5, Tab. 6.

C. Implementation Details of Models in Com-
parison

We compare our model with several recent SoTA mod-
els: Zero-1-2-3, Zero-1-2-3 XL [20] and EscherNet [17]
for comparison in NVS tasks; DreamGaussian [32], Large
Multi-View Gaussian Model(LGM) [33], SyncDreamer
[21], InstantMesh [39] and EscherNet [17] for mesh qual-
ity comparison in 3D reconstruction tasks. OccNVS is used
for comparison. For 3D reconstruction tasks, raw meshes
from the models are normalized first and then compared
with ground truth as in [17, 21].

Zero-1-2-3 & Zero-1-2-3 XL It is the first work in
diffusion-based NVS for objects. In its model design, one
input view can be referenced at a time and one target view

can be synthesized afterwards. As a result, Zero-1-2-3 and
its XL version are only adopted for one-input settings.

EscherNet Our model shares the same model structure
with EscherNet. As the result, EscherNet can be used for
direct comparison in all tasks and settings in this paper, in-
cluding NVS and 3D reconstruction. For NVS, EscherNet
is able to synthesize multiple novels view from any query
viewpoints. For 3D reconstruction, 36 fixed view are syn-
thesized, with the azimuth from 0◦to 360◦with a rendering
every 30◦at a set of elevations (-30◦, 0◦, 30◦) for recon-
struction with NeuS, the same setting as reconstruction with
our model.

We fine-tune our model based on public weights shared
by authors of Eschernet, and we have confirmed with them
about the performance of EscherNet in the experiments.

DreamGaussian It is a two-stage model, which uses the
first stage for reconstruction conditioned on a single input
view and second image for texture refinement. Hence, there
are no novel views required before reconstruction. Rotation
is conducted for evaluation as in EscherNet. It is worth not-
ing that DreamGaussian and LGM are the fastest methods
for reconstruction in our experiment.

LGM As a two-stage method, LGM [33] depends on
four views from fixed viewpoints synthesized by Image-
Dream [35] conditioned on one input view to reconstruct
3D. It is also a fast pipeline, however, it is found to strug-
gle with significant elevation and azimuth angles in input
views. Therefore, it does not perform well in our tests. The
fundamental reason is that ImageDream may not be able to
provide consistent and reasonable novel views when condi-
tioned on inputs with significant angles, as shown in Fig.7.
The same rotation mechanism is conducted as with Dream-
Gaussain.

SyncDreamer 16 fixes views are synthesized condi-
tioned on one input view and then given to NeuS [36] by
SyncDreamer [21]. Compared with reconstruction time
which usually takes near 30 minutes, the time spent on syn-
thesis is almost insignificant. That is, the time used to re-
construct an object from one input view to a complete mesh
is largely dependent on the reconstruction method, which
shares a similar case with reconstitution based on our model
with overfitting methods like NeuS.

InstantMesh In the original pipeline, Zero123++ Shi
et al. [30] is used for NVS at the first stage and InstantMesh
[39] construct the mesh based on novel views. Zero123++
is designed to generate 6 fixed views of an object with rel-
ative azimuth rotations and absolute elevations. The 6 in-
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Table 1. Performance comparison on GSO-30, RTMV, NeRF Synthetic datasets and occluded counterparts (OccNVS). The best number
is highlighted in bold, and the second best is underlined.

Method # Ref. Views GSO-30 Occluded GSO-30 RTMV Occluded RTMV NeRF Occluded NeRF

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Zero-1-to-3 [20] 1 18.55 0.86 0.122 14.5 0.83 0.192 10.27 0.514 0.409 9.33 0.505 0.428 12.61 0.639 0.31 11.95 0.634 0.338
Zero-1-to-3 XL [20] 1 18.74 0.855 0.124 14.55 0.823 0.198 10.47 0.516 0.402 9.38 0.503 0.429 12.62 0.637 0.309 11.65 0.625 0.346

EscherNet[17]

1 20.05 0.883 0.096 15.64 0.852 0.161 10.43 0.520 0.411 9.63 0.511 0.432 13.35 0.658 0.293 12.55 0.654 0.317
2 22.85 0.908 0.063 15.82 0.865 0.145 12.55 0.581 0.306 10.92 0.566 0.344 14.93 0.699 0.21 13.39 0.685 0.253
3 23.87 0.918 0.052 16.32 0.874 0.130 13.58 0.611 0.259 11.68 0.594 0.295 16.19 0.729 0.161 14.57 0.716 0.119
5 24.91 0.926 0.044 16.67 0.883 0.118 14.48 0.633 0.222 12.28 0.611 0.264 17.11 0.748 0.128 15.28 0.731 0.167

10 25.65 0.933 0.037 16.92 0.889 0.111 15.44 0.657 0.186 13.00 0.634 0.230 17.72 0.76 0.115 15.80 0.746 0.150

Ours

1 20.11 0.883 0.094 19.72 0.879 0.103 10.5 0.523 0.408 10.34 0.52 0.416 13.35 0.661 0.29 13.51 0.666 0.29
2 22.83 0.908 0.062 21.86 0.902 0.07 12.57 0.583 0.303 12.32 0.577 0.316 14.96 0.698 0.21 14.74 0.692 0.221
3 24.02 0.918 0.051 23.22 0.913 0.056 13.45 0.608 0.262 13.29 0.603 0.269 16.14 0.727 0.164 15.85 0.721 0.174
5 25.15 0.926 0.043 24.22 0.921 0.047 14.38 0.631 0.223 14.16 0.627 0.232 16.97 0.745 0.132 16.79 0.74 0.138

10 25.98 0.934 0.036 25.06 0.929 0.04 15.42 0.658 0.186 15.13 0.652 0.196 17.72 0.759 0.115 17.49 0.755 0.121

Ours w/o
1 20.33 0.886 0.091 15.78 0.856 0.158 10.59 0.531 0.399 9.64 0.519 0.42 13.35 0.657 0.292 12.8 0.659 0.309
2 22.7 0.907 0.063 15.87 0.866 0.145 12.66 0.585 0.299 10.99 0.57 0.336 14.97 0.7 0.209 13.47 0.688 0.251

Input-Level Masking 3 23.92 0.918 0.051 16.35 0.875 0.129 13.59 0.611 0.258 11.62 0.595 0.294 16.16 0.728 0.165 14.53 0.714 0.203
5 25.00 0.927 0.043 16.66 0.883 0.118 14.41 0.632 0.223 12.21 0.612 0.266 17.0 0.745 0.131 15.24 0.73 0.169

10 25.91 0.934 0.036 17.02 0.891 0.11 15.3 0.655 0.189 12.88 0.632 0.234 17.53 0.756 0.119 15.76 0.744 0.152

Ours w/o
1 19.95 0.88 0.1 19.31 0.875 0.109 10.78 0.53 0.391 10.57 0.526 0.405 13.47 0.658 0.289 13.57 0.66 0.295
2 22.72 0.907 0.064 21.65 0.9 0.073 12.57 0.582 0.301 12.26 0.575 0.315 14.98 0.697 0.211 14.69 0.691 0.226

Feature-Level Masking 3 23.93 0.917 0.052 22.97 0.91 0.059 13.5 0.609 0.259 13.31 0.609 0.259 16.25 0.729 0.163 15.91 0.721 0.175
5 25.05 0.926 0.043 23.98 0.919 0.049 14.37 0.63 0.223 14.12 0.624 0.233 17.22 0.749 0.128 16.86 0.742 0.138

10 25.85 0.934 0.037 24.77 0.927 0.042 15.38 0.658 0.185 15.08 0.65 0.195 17.7 0.76 0.116 17.43 0.754 0.123

Figure 6. Qualitative results with different ratios for feature-level masking.

put images have poses with alternating absolute elevations
of 20°and -10°, and their azimuths are defined relative to
the query image, beginning at 30°and increased by 60°for
subsequent poses. However, it sometimes generate meshes
with floaters around the object, which leads to erroneous
scale in normalization, as shown in Fig. 5. It is found that
we can make use of our model to generate more consistent
novel views at the preferred viewpoints for InstantMesh so
that the performance can be improved significantly with-
out floaters in the final meshes. The performance can be
further enhanced by providing more novel views covering
more viewpoints to InstantMesh. We provide one example

comparing novel views from Zero123++ and our method in
Fig. 8. No extra training or extra reference time is induced
in this whole process.

Although it is able to provide views from any view-
points, we find that the six viewpoints used in the origi-
nal pipeline and their absolute values are necessary to the
network. Therefore, we define that the input views are at
0◦azimuth angle and we rotate the meshes back before eval-
uation.

As noticed by authors of InstantMesh, InstantMesh is
able to take in various numbers of input views because of its
transformer-based structure. However, in contrast to their
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Table 2. Performance comparison on amodel completion on Oc-
cluded GSO-30, RTMV, and NeRF Synthetic datasets (OccNVS).

Method # Ref. / Nol. Views Occluded GSO-30 Occluded RTMV Occluded NeRF

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

InstructPix2Pix [1, 3]

1 18.08 0.92 0.098 15.19 0.829 0.142 16.77 0.843 0.144
2 17.84 0.917 0.107 15.14 0.837 0.141 17.49 0.859 0.123
3 17.86 0.918 0.11 15.03 0.837 0.141 18.23 0.868 0.117
5 17.88 0.92 0.108 15.03 0.824 0.149 18.71 0.869 0.113

10 17.51 0.918 0.114 15.38 0.828 0.145 18.31 0.872 0.111

Pix2gestalt [27]

1 20.71 0.942 0.072 16.22 0.85 0.109 16.98 0.849 0.123
2 19.87 0.937 0.082 16.52 0.859 0.11 17.45 0.854 0.117
3 20.2 0.938 0.08 16.06 0.859 0.112 18.02 0.863 0.115
5 20.38 0.939 0.079 15.96 0.852 0.114 18.43 0.863 0.11

10 19.94 0.937 0.084 16.08 0.85 0.115 18.2 0.866 0.108

Ours

1 28.42 0.952 0.029 19.99 0.832 0.09 21.24 0.841 0.071
2 28.62 0.954 0.027 20.93 0.845 0.078 21.59 0.852 0.065
3 29.29 0.956 0.025 22.28 0.848 0.072 22.22 0.863 0.06
5 29.33 0.957 0.024 22.26 0.832 0.075 22.12 0.858 0.06

10 28.34 0.95 0.027 20.81 0.799 0.088 21.47 0.843 0.062

Table 3. 3D reconstruction comparison on GSO3D and Occluded
GSO3D datasets. Time is measured from when input views are
given to networks to when the reconstructed meshes are ready in
the batch inference mode.

Method # Ref. Views # Nol. Views GSO3D Occluded GSO3D Time

Chamfer Dist. ↓ Volume IoU ↑ Chamfer Dist. ↓ Volume IoU ↑ Minutes ↓
Dream Gaussian[32] 1 - 0.0543 0.4515 0.0611 0.3448 1.5
ImageDream[35]+LGM[33] 1 4 0.0877 0.2521 0.1787 0.095 1.5
SyncDreamer[21]+NeuS[36] 1 16 0.0427 0.5191 0.0624 0.2784 27
Zero123++[30]+InstantMesh[39] 1 6 0.0608 0.4557 0.0655 0.2478 1.6

EscherNet [17] + NeuS[36]

1 36 0.0312 0.5941 0.0477 0.3736

27
2 36 0.0217 0.6878 0.0671 0.286
3 36 0.0186 0.7117 0.0346 0.3853
5 36 0.0177 0.7377 0.0351 0.3976

10 36 0.0169 0.7442 0.0312 0.4498

Ours + NeuS

1 36 0.0305 0.6018 0.0376 0.5602

27
2 36 0.0214 0.6921 0.0249 0.664
3 36 0.0185 0.7277 0.0197 0.7139
5 36 0.0182 0.7294 0.0189 0.7221

10 36 0.0168 0.7437 0.0176 0.7352

Ours + InstantMesh

1 6 0.0304 0.5912 0.0392 0.5405

1.3
2 6 0.0259 0.633 0.0301 0.5954
3 6 0.0251 0.6491 0.0257 0.6413
5 6 0.0238 0.6667 0.0291 0.6376

10 6 0.0275 0.6472 0.0282 0.6414

Ours + InstantMesh

1 42 0.0278 0.6244 0.04 0.5501

1.3
2 42 0.0224 0.6803 0.0311 0.6118
3 42 0.0265 0.6744 0.0277 0.6605
5 42 0.0253 0.6857 0.024 0.6886

10 42 0.0179 0.7295 0.0233 0.6987

Figure 7. Examples of novel views generated by ImageDream. It
struggles with significant elevations and azimuths. Therefore, the
challenge is propagated to the reconstruction pipeline of LGM.

finding that decrease the number of input views can boost
the performance in some hard cases, we found with our
model, simply increasing the number of input views can fur-
ther improve the overall reconstruction performance with-
out extra overheads, thanks to the ability to synthesize high-
quality views from any query viewpoints from our model.

Figure 8. Examples of novel views generated by Zero123++ and
EscherNet++ for reconstruction by InstantMesh. The last row con-
tains all 42 views by our model. The scale and pose of the object
in novel views by Zero123++ are not consistent sometimes, which
can lead to confusion for InstantMesh.

D. Conclusion, Limitations & Future Work

In this paper, we propose EscherNet++, a masked fine-tuned
diffusion model that can synthesize novel views of objects
in a zero-shot way with amodal completion ability. We find
that properly masked input images and input feature maps
can contribute to better performance of the model. In ad-
dition, it can be seamlessly integrated with other fast feed-
forward image-to-mesh models because of its flexible fea-
ture to synthesize any query views without the need for ex-
tra training, and the fast 3D reconstruction performance can
be further boosted by its scalable nature.

During experiments, we found there are several aspects
in which our model still falls short, including 1) degraded
performance with data incorporating intricate details and
complex layouts, 2) hallucination especially with occluded
inputs. Future work can explore robust architecture designs
with more diverse datasets, more explicit guidance with
multi-modal inputs. Feed-forward 3D reconstruction meth-
ods also have the potential to be improved in terms of how
to increase robustness to inconsistency in inputs views and
utilize increasing number of views more efficiently. Last,
a comprehensive framework is necessary to make our work
more accessible in applications that includes object segmen-
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Table 4. Performance comparison on GSO-30 and Occluded GSO-30 datasets with different ratios for feature-level masking.

Base Method Input-Level Masking Ratio Feature-Level Masking Ratio # Ref. Views GSO-30 Occluded GSO-30

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
EscherNet (ckpt) 0.5 1.0 1 19.62 0.879 0.1 19.11 0.874 0.11
EscherNet (ckpt) 0.5 1.0 2 22.21 0.903 0.067 21.36 0.897 0.076
EscherNet (ckpt) 0.5 1.0 3 23.54 0.915 0.054 22.58 0.908 0.061
EscherNet (ckpt) 0.5 1.0 5 24.51 0.922 0.046 23.81 0.917 0.051
EscherNet (ckpt) 0.5 1.0 10 25.41 0.93 0.039 24.68 0.926 0.043

EscherNet (ckpt) 0.5 0.75 1 19.68 0.879 0.099 19.21 0.875 0.108
EscherNet (ckpt) 0.5 0.75 2 22.4 0.905 0.066 21.47 0.898 0.074
EscherNet (ckpt) 0.5 0.75 3 23.78 0.916 0.053 22.65 0.908 0.061
EscherNet (ckpt) 0.5 0.75 5 24.82 0.924 0.044 23.89 0.918 0.05
EscherNet (ckpt) 0.5 0.75 10 25.71 0.933 0.038 24.84 0.927 0.042

EscherNet (ckpt) 0.5 0.5 1 19.93 0.883 0.095 19.27 0.877 0.107
EscherNet (ckpt) 0.5 0.5 2 22.72 0.907 0.063 21.76 0.9 0.072
EscherNet (ckpt) 0.5 0.5 3 23.87 0.917 0.051 22.97 0.91 0.059
EscherNet (ckpt) 0.5 0.5 5 24.93 0.925 0.043 24.04 0.919 0.049
EscherNet (ckpt) 0.5 0.5 10 25.88 0.933 0.037 24.95 0.927 0.041

EscherNet (ckpt) 0.5 0.25 1 20.11 0.883 0.094 19.72 0.879 0.103
EscherNet (ckpt) 0.5 0.25 2 22.83 0.908 0.062 21.86 0.902 0.07
EscherNet (ckpt) 0.5 0.25 3 24.02 0.918 0.051 23.22 0.913 0.056
EscherNet (ckpt) 0.5 0.25 5 25.15 0.926 0.043 24.22 0.921 0.047
EscherNet (ckpt) 0.5 0.25 10 25.98 0.934 0.036 25.06 0.929 0.04

EscherNet (ckpt) 0.5 0 1 19.95 0.88 0.1 19.31 0.875 0.109
EscherNet (ckpt) 0.5 0 2 22.72 0.907 0.064 21.65 0.9 0.073
EscherNet (ckpt) 0.5 0 3 23.93 0.917 0.052 22.97 0.91 0.059
EscherNet (ckpt) 0.5 0 5 25.05 0.926 0.043 23.98 0.919 0.049
EscherNet (ckpt) 0.5 0 10 25.85 0.934 0.037 24.77 0.927 0.042

Table 5. Performance comparison on RTMV and Occluded RTMV datasets with different ratios for feature-level masking.

Base Method Input-Level Masking Ratio Feature-Level Masking Ratio # Ref. Views RTMV Occluded RTMV

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
EscherNet (ckpt) 0.5 1.0 1 10.62 0.532 0.401 10.37 0.525 0.414
EscherNet (ckpt) 0.5 1.0 2 12.38 0.58 0.31 12.14 0.574 0.322
EscherNet (ckpt) 0.5 1.0 3 13.23 0.606 0.267 13.02 0.6 0.279
EscherNet (ckpt) 0.5 1.0 5 14.23 0.628 0.232 13.94 0.62 0.243
EscherNet (ckpt) 0.5 1.0 10 15.2 0.654 0.192 14.96 0.648 0.201

EscherNet (ckpt) 0.5 0.75 1 10.29 0.522 0.418 10.12 0.518 0.428
EscherNet (ckpt) 0.5 0.75 2 12.3 0.577 0.316 12.17 0.576 0.32
EscherNet (ckpt) 0.5 0.75 3 13.3 0.606 0.267 13.1 0.6 0.278
EscherNet (ckpt) 0.5 0.75 5 14.3 0.63 0.227 14.01 0.623 0.239
EscherNet (ckpt) 0.5 0.75 10 15.17 0.652 0.193 14.9 0.647 0.203

EscherNet (ckpt) 0.5 0.5 1 10.37 0.521 0.415 10.23 0.518 0.42
EscherNet (ckpt) 0.5 0.5 2 12.3 0.575 0.318 12.08 0.571 0.327
EscherNet (ckpt) 0.5 0.5 3 13.23 0.604 0.272 13.1 0.599 0.28
EscherNet (ckpt) 0.5 0.5 5 14.26 0.628 0.229 14.02 0.622 0.24
EscherNet (ckpt) 0.5 0.5 10 15.21 0.652 0.192 14.93 0.645 0.202

EscherNet (ckpt) 0.5 0.25 1 10.5 0.523 0.408 10.34 0.52 0.416
EscherNet (ckpt) 0.5 0.25 2 12.57 0.583 0.303 12.32 0.577 0.316
EscherNet (ckpt) 0.5 0.25 3 13.45 0.608 0.262 13.29 0.603 0.269
EscherNet (ckpt) 0.5 0.25 5 14.38 0.631 0.223 14.16 0.627 0.232
EscherNet (ckpt) 0.5 0.25 10 15.42 0.658 0.186 15.13 0.652 0.196

EscherNet (ckpt) 0.5 0 1 10.78 0.53 0.391 10.57 0.526 0.405
EscherNet (ckpt) 0.5 0 2 12.57 0.582 0.301 12.26 0.575 0.315
EscherNet (ckpt) 0.5 0 3 13.5 0.609 0.259 13.31 0.609 0.259
EscherNet (ckpt) 0.5 0 5 14.37 0.63 0.223 14.12 0.624 0.233
EscherNet (ckpt) 0.5 0 10 15.38 0.658 0.185 15.08 0.65 0.195

tation, pose estimation, etc, combined as integrated modules
or a single unified model.
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Table 6. Performance comparison on NeRF and Occluded NeRF datasets with different ratios for feature-level masking.

Base Method Input-Level Masking Ratio Feature-Level Masking Ratio # Ref. Views NeRF Occluded NeRF

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
EscherNet (ckpt) 0.5 1.0 1 13.43 0.657 0.292 13.5 0.661 0.295
EscherNet (ckpt) 0.5 1.0 2 14.99 0.696 0.214 14.72 0.688 0.229
EscherNet (ckpt) 0.5 1.0 3 16.19 0.728 0.166 15.87 0.722 0.178
EscherNet (ckpt) 0.5 1.0 5 17.01 0.744 0.133 16.71 0.738 0.143
EscherNet (ckpt) 0.5 1.0 10 17.46 0.754 0.121 17.19 0.749 0.128

EscherNet (ckpt) 0.5 0.75 1 13.37 0.659 0.3 13.9 0.671 0.282
EscherNet (ckpt) 0.5 0.75 2 14.93 0.695 0.214 14.66 0.688 0.229
EscherNet (ckpt) 0.5 0.75 3 16.19 0.727 0.166 15.87 0.721 0.177
EscherNet (ckpt) 0.5 0.75 5 17.12 0.747 0.13 16.74 0.739 0.141
EscherNet (ckpt) 0.5 0.75 10 17.53 0.756 0.119 17.26 0.751 0.126

EscherNet (ckpt) 0.5 0.5 1 13.43 0.659 0.295 13.47 0.659 0.3
EscherNet (ckpt) 0.5 0.5 2 14.85 0.695 0.212 14.66 0.689 0.224
EscherNet (ckpt) 0.5 0.5 3 16.14 0.727 0.164 15.84 0.721 0.176
EscherNet (ckpt) 0.5 0.5 5 16.97 0.745 0.132 16.69 0.738 0.142
EscherNet (ckpt) 0.5 0.5 10 17.4 0.754 0.121 17.16 0.749 0.128

EscherNet (ckpt) 0.5 0.25 1 13.35 0.661 0.29 13.51 0.666 0.29
EscherNet (ckpt) 0.5 0.25 2 14.96 0.698 0.21 14.74 0.692 0.221
EscherNet (ckpt) 0.5 0.25 3 16.14 0.727 0.164 15.85 0.721 0.174
EscherNet (ckpt) 0.5 0.25 5 16.97 0.745 0.132 16.79 0.74 0.138
EscherNet (ckpt) 0.5 0.25 10 17.72 0.759 0.115 17.49 0.755 0.121

EscherNet (ckpt) 0.5 0 1 13.47 0.658 0.289 13.57 0.66 0.295
EscherNet (ckpt) 0.5 0 2 14.98 0.697 0.211 14.69 0.691 0.226
EscherNet (ckpt) 0.5 0 3 16.25 0.729 0.163 15.91 0.721 0.175
EscherNet (ckpt) 0.5 0 5 17.22 0.749 0.128 16.86 0.742 0.138
EscherNet (ckpt) 0.5 0 10 17.7 0.76 0.116 17.43 0.754 0.123
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