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Abstract

Accurately modeling multi-class cell topology is crucial in
digital pathology, as it provides critical insights into tis-
sue structure and pathology. The synthetic generation of
cell topology enables realistic simulations of complex tis-
sue environments, enhances downstream tasks by augment-
ing training data, aligns more closely with pathologists’ do-
main knowledge, and offers new opportunities for control-
ling and generalizing the tumor microenvironment. In this
paper, we propose a novel approach that integrates topolog-
ical constraints into a diffusion model to improve the gener-
ation of realistic, contextually accurate cell topologies. Our
method refines the simulation of cell distributions and inter-
actions, increasing the precision and interpretability of re-
sults in downstream tasks such as cell detection and classi-
fication. To assess the topological fidelity of generated lay-
outs, we introduce a new metric, Topological Fréchet Dis-
tance (TopoFD), which overcomes the limitations of tradi-
tional metrics like FID in evaluating topological structure.
Experimental results demonstrate the effectiveness of our
approach in generating multi-class cell layouts that capture
intricate topological relationships.

1. Introduction

Deep learning methods have significantly advanced nuclei
analysis tasks, including segmentation [9, 12], classifica-
tion, and detection [1], crucial for detailed tissue character-
ization and clinical applications [20]. However, accurately
annotating multi-class cell arrangements remains challeng-
ing due to complex spatial patterns and domain expertise
requirements. Existing annotated datasets often lack the di-
versity needed for generalization across tissues.

Generative models, particularly diffusion models [6, 14,
19], have emerged as powerful tools for synthesizing high-
resolution histopathology images [27]. Despite their visual
quality, these models typically provide limited biological
interpretability and control, hindering validation against ex-
pert knowledge.

A critical gap is the explicit modeling of cell spatial ar-
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Figure 1. Illustrations of intra-class distribution and the inter-class
relationship across various cell types. Here we only highlight the
tumor/epithelial, lymphocytes, and stromal cells.

rangements, fundamental for understanding tissue microen-
vironments and disease progression [24]. Spatial config-
urations of diverse cell types, such as lymphocytes and ep-
ithelial cells, significantly inform pathology diagnostics and
prognostics, e.g., tumor-infiltrating lymphocytes correlate
with improved outcomes [23]. An illustrative overview of
these intra-class arrangements and inter-class spatial inter-
actions among tumor/epithelial, lymphocytic, and stromal
populations is presented in Fig. 1.

To address this, we propose the first diffusion model
explicitly designed to generate biologically meaningful
cell spatial layouts, guided by persistent homology-based
topological constraints. Our model accurately represents
cell clusters (0-dimensional features) and spatial voids (1-
dimensional features), ensuring realistic intra-class struc-
tures and inter-class interactions.

Additionally, we introduce a novel cell counting loss, ad-
dressing the unrealistic cell density bias in prior generative
approaches [3]. We also propose the Topological Fréchet
Distance (TopoFD), a metric specifically designed to evalu-
ate the spatial-topological fidelity of synthetic layouts com-
pared to real data.

Our contributions are summarized as follows:
• The first topology-guided diffusion model for generating

realistic cell layouts in digital pathology.
• A novel cell counting loss to accurately model cell num-

ber distributions.
• The introduction of TopoFD, a metric for evaluating topo-

logical accuracy of generated layouts.
Experimental results validate our method, demonstrating



enhanced synthetic data quality and significant performance
improvements in downstream tasks such as cell detection
and classification.

2. Method
In this section, we introduce our method for synthesizing re-
alistic multi-class cell layouts with precise topological con-
straints. Given n cell classes, we define a condition vector
c = [c1, c2, . . . , cn], where each element ci represents the
target count of the respective cell type. However, condi-
tioning solely on c is inadequate for ensuring accurate cell
counts, intra-class spatial distributions, and inter-class topo-
logical relationships [11]. To address this, we propose a dif-
ferentiable cell-counting loss and two topology-aware ob-
jectives based on persistent homology [7, 21]. These con-
straints jointly ensure that the generated layouts faithfully
reflect both spatial and topological characteristics.

We first briefly review diffusion models in Sec. 2.1, then
introduce our proposed topology-preserving layout genera-
tion framework, TopoCellGen, in Sec. 2.2. Finally, we de-
scribe our novel evaluation metric, the Topological Fréchet
Distance (TopoFD), in Sec. 2.3.
Preliminaries. In a multi-class cell layout containing n
channels, each channel corresponds to a specific cell type
(e.g., lymphocyte), with each cell represented as a square
where the pixel value is set to 1, while the pixel value of the
background is set to 0.

2.1. Diffusion Models

Our generative approach utilizes a denoising diffusion prob-
abilistic model (DDPM) [14], which learns to reverse a
forward process that incrementally adds Gaussian noise to
transform a structured cell layout into a noise distribution.
The reverse process then reconstructs the layout from noise
via iterative denoising.

Let x0 represent the target cell layout and xT denote
pure Gaussian noise. At each time step t, noise is added
to the data based on a variance schedule βt: q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI). This forward process results

in the progressively noisier version of the data, with xT

approximating an isotropic Gaussian distribution as t in-
creases.

The reverse process, parameterized by a neural network
ϵθ(xt, t) (typically UNet [22]), learns to iteratively denoise
xT back to x0. Conditioning on the cell count vector c, the
model is trained by minimizing a simplified variant of the
variational lower bound, specifically focusing on predicting
the noise added at each step:

Lsimple = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, c, t)∥2

]
(1)

where ϵ ∼ N (0, I) is the noise sampled during training.
This objective enables the model to learn the reverse pro-
cess effectively. Instead of the standard iterative denoising,

we also approximate the noiseless layout x̂t
0 deterministi-

cally for any noisy state xt by marginalizing over the noise
schedule:

x̂t
0 ≈ 1√

ᾱt

(
xt −

√
1− ᾱtϵθ(xt, c, t)

)
(2)

where αt = 1−βt and ᾱt =
∏t

s=1 αs, which aggregates the
effect of the variance schedule up to time t. This predicted
noiseless layout, x̂t

0, will be used to impose constraints in
subsequent stages.

2.2. Spatially Aligned Cell Layout Generation

The primary objective of our method is to generate multi-
class cell layouts that accurately simulate both the topolog-
ical and spatial properties of real-world biological cell dis-
tributions. To achieve this, we ensure accurate cell counts
for each cell type through a cell counting loss, while also
preserving spatial relationships within individual cell types
via enforcing intra-class spatial consistency. Furthermore,
we maintain structural coherence across all cell types by
applying an inter-class structural regularization, leverag-
ing 1-dimensional persistent homology to encapsulate both
type-specific and collective spatial properties. The overall
pipeline is shown in Fig. 2.

Cell Counting Loss. Given the target layout x0, which
serves as the ground truth, for each time step t, we obtain
the predicted noiseless layout x̂t

0 using Eq. (2). To ensure
precise control over the number of cells in the generated
layout, we introduce a differentiable cell counting loss. The
key challenge lies in making the counting operation differ-
entiable for gradient-based optimization. We address this
by employing the Straight-Through Estimator (STE) [4],
which enables gradient flow through the discrete binariza-
tion operation. Specifically, after obtaining x̂t

0, we apply a
hard threshold to obtain binary values:

b(x̂t
0) = float((x̂t

0 ≥ τ)) (3)

where τ is the threshold parameter. Here we set it to the me-
dian value of x̂t

0. During back-propagation, the STE treats
the thresholding operation as an identity function, allowing
gradients to flow through. The cell counting loss is then
formulated as:

Lcount =
1

|n|

n∑
i=1

∣∣∣∣∣
∑

b(x̂t
0)

(i)

δ
−

∑
x
(i)
0

δ

∣∣∣∣∣ (4)

where b(x̂t
0)

(i) represents the binarized prediction for the
i-th channel, and δ indicates the area (3 × 3) of a single
cell in the layouts. This formulation provides a differen-
tiable approximation to the discrete cell counting operation,
enabling end-to-end training while maintaining precise con-
trol over the number of cells for each cell type.

Intra-Class Spatial Consistency. To enforce spatial con-
sistency within each cell type, we first calculate the distance



Figure 2. An overview of our method TopoCellGen. (a) denotes the overview workflow. (b) shows the details of Lcount, Lintra and Linter.

transform map [8] for each channel in both the target lay-
out x0 and the predicted noiseless layout x̂t

0. The distance
transform D(x) is a function that assigns to each pixel the
minimum Euclidean distance to the nearest cell (or non-zero
pixel) in the channel. This can be formally written as:

D(x) = min
p∈cells

∥x− p∥ (5)

where p represents the positions of cells in the layout. Af-
ter obtaining the distance transform maps of the target lay-
out and the predicted noiseless layout, x̂edt

t = D(b(x̂t
0))

and xedt
0 = D(x0), we calculate the 1-dim persistence di-

agrams for both of them, Dgm(x̂edt
t ) and Dgm(xedt

0 ) re-
spectively. Similar to previous topological losses [15], we
will use the classic Wasserstein distance between the two
diagrams. Given two diagrams Dgm(q) and Dgm(s), the
p-th Wasserstein distance is defined as follows:

Wp(Dgm(q), Dgm(s)) =

inf
γ∈Γ

∑
x∈Dgm(q)

||x− γ(x)||p
 1

p

where Γ represents all bijections from Dgm(q) to Dgm(s).
The Wasserstein distance operates by identifying an op-

timal correspondence between points in two diagrams, as-
signing unmatched points to their projections on the diag-
onal. This distance metric is calculated by summing the
distances between all paired points. The process of finding
this optimal matching, as well as calculating the Wasser-
stein distance, can be accomplished using either the tra-
ditional Hungarian algorithm or more sophisticated meth-
ods [16, 17].

Next, we denote γ∗, the optimal matching between
Dgm(x̂edt

t ) and Dgm(xedt
0 ). Each persistence dot in

Dgm(x̂edt
t ) is matched either to a target dot in Dgm(xedt

0 )
or its projection on the diagonal. We can now formulate the

spatial distribution consistency loss as the squared distance
between every dot in Dgm(x̂edt

t ) and its match:

Lspc =
∑

q∈Dgm(x̂edt
t )

||q − γ∗(q)||2 (6)

For a multi-class cell layout containing n classes of cells,
we formulate the intra-class spatial consistency loss as fol-
lows by averaging the Eq. (6) across multiple classes:

Lintra =
1

|n|

n∑
i=1

Lspc

(
Dgm((x̂edt

t )(i))), Dgm((xedt
0 )(i))

)
(7)

Inter-Class Structural Regularization. Beyond maintain-
ing spatial distribution consistency within individual cell
types, it is equally important to capture the relationships
between different cell types. To achieve this, we construct
a unified layout by combining all cell types into a single-
channel representation, referred to as the aggregated layout:
xagg
0 = Agg(x0) and x̂t,agg

0 = Agg(x̂t
0). We then com-

pute the distance transform for the aggregated layouts, with
x̂edt
t,agg = D(x̂t,agg

0 ) representing the distance transform of
the predicted layout and xedt

0,agg = D(xagg
0 ) for the target

layout. The inter-class structural loss Linter is computed
similarly to the intra-class loss:

Linter = Lspc
(
Dgm(x̂edt

t,agg), Dgm(xedt
0,agg)

)
(8)

Together, these class-specific and cross-class regulariza-
tions ensure that both individual cell distributions and their
cumulative spatial interactions are enforced, preserving crit-
ical spatial dynamics within and between cell types in the
generated layouts.
Final Objectives. The final training objective of the model
is the weighted sum of the three losses with Lsimple:
Ltotal = Lsimple + λcLcount + λintraLintra + λinterLinter (9)



Method FID ↓ Lym. ↓ Epi. ↓ Stro. ↓ Neu. ↓ Pla. ↓ Eos. ↓ Con. ↓ TCE ↓ TopoFD ↓ MMD ↓

BRCA-M2C

ADM [6] 1.150 13.757 40.230 15.491 – – – – 22.465 133.012 0.732
TMCCG [2] 0.634 11.503 34.032 12.907 – – – – 19.687 89.252 0.635

Spatial Diffusion [18] 0.263 10.852 35.954 13.496 – – – – 20.806 97.584 0.589
TopoCellGen 0.005 2.090 3.824 2.468 – – – – 5.192 69.354 0.421

Lizard

ADM [6] 0.059 16.508 11.796 – 1.123 4.328 1.598 10.737 23.964 65.910 0.783
TMCCG [2] 1.093 15.548 10.011 – 2.376 4.293 1.872 11.643 22.604 63.120 0.667

Spatial Diffusion [18] 0.137 10.740 9.062 – 3.040 6.552 2.173 11.225 20.606 79.591 0.883
TopoCellGen 0.027 6.155 6.560 – 1.022 2.982 1.167 7.288 11.590 31.607 0.536

Table 1. Results for BRCA-M2C and Lizard datasets on the quality of the generated samples.

Data Method F1-Score ↑
Lymphocytes Epithelial Stromal Mean Detection

Real.

UNet

0.569 ± 0.010 0.736 ± 0.012 0.507 ± 0.015 0.604 ± 0.011 0.857 ± 0.006
Real+Syn. (Rand) 0.549 ± 0.009 0.693 ± 0.014 0.472 ± 0.016 0.571 ± 0.013 0.848 ± 0.008

Real+Syn (TMCCG) 0.650 ± 0.007 0.768 ± 0.010 0.511 ± 0.012 0.643 ± 0.009 0.852 ± 0.005
Real+Syn (SpaDM) 0.647 ± 0.006 0.797 ± 0.003 0.554 ± 0.011 0.666 ± 0.007 0.853 ± 0.005

Real+Syn (TopoCellGen) 0.656 ± 0.003 0.803 ± 0.005 0.574 ± 0.004 0.678 ± 0.004 0.860 ± 0.004

Real.

MCSpatNet

0.615 ± 0.008 0.777 ± 0.010 0.540 ± 0.013 0.644 ± 0.009 0.855 ± 0.005
Real+Syn. (Rand) 0.578 ± 0.009 0.756 ± 0.012 0.502 ± 0.014 0.612 ± 0.010 0.851 ± 0.006

Real+Syn (TMCCG) 0.678 ± 0.006 0.800 ± 0.005 0.522 ± 0.014 0.667 ± 0.007 0.853 ± 0.004
Real+Syn (SpaDM) 0.639 ± 0.005 0.804 ± 0.007 0.563 ± 0.012 0.669 ± 0.006 0.855 ± 0.005

Real+Syn (TopoCellGen) 0.652 ± 0.004 0.817 ± 0.006 0.582 ± 0.005 0.684 ± 0.004 0.862 ± 0.004

Table 2. Results on cell detection and classification tasks on BRCA-M2C dataset. The best and statistically significant results are high-
lighted in bold.

where λc, λintra and λinter are hyper-parameters that control
the relative contributions of the respective loss terms.

2.3. Topological Fréchet Distance (TopoFD)

Conventional Fréchet Inception Distance (FID) [13] as-
sesses generation quality by comparing feature distributions
of real and synthetic samples, typically computed from pre-
trained networks such as InceptionV3 [25]. However, FID
inadequately captures complex spatial and topological cell
interactions. To address this, we propose the Topologi-
cal Fréchet Distance (TopoFD), which quantifies higher-
dimensional spatial and topological discrepancies via per-
sistence diagrams derived from cell-center point clouds.
Specifically, we compute the barycenters of persistence
diagrams for real and synthetic layouts and evaluate the
Fréchet distance between their respective persistence land-
scapes [5], averaged over all cell types.

3. Experiments

We conduct extensive experiments on two public and
widely used nuclei analysis datasets. We compare our
method against SoTA layout generation methods regarding
sample quality and performance on downstream tasks.

Datasets. We evaluate our proposed method on TCGA
Breast Cancer Cell Classification Dataset (BRCA-M2C) [1]
and Lizard dataset [10].

Evaluation Metrics. We evaluate our proposed method on
both sample quality and the performance of downstream
tasks. We use Fréchet Inception Distance (FID) [13],
the cell count error for each cell type, the total count er-
ror (TCE), our proposed TopoFD and maximum mean
discrepancy (MMD) [26] to evaluate how well the gen-
erated cell layouts align with the reference layouts. Note
that for FID, feature extraction is tailored to each dataset

with custom-trained models. On the other hand, we gen-
erate 2, 000 image-layout pairs as augmented training data
for cell detection and classification tasks, evaluating their
performance with the F1-score.

3.1. Experimental Results

Quantitative Results on Sample Quality. As reported in
Table 1, our proposed TopoCellGen framework achieves the
lowest Fréchet Inception Distance (FID) and Topological
Fréchet Distance (TopoFD) relative to three strong base-
lines—ADM [6], TMCCG [2], and Spatial Diffusion [18].
These improvements highlight TopoCellGen’s capacity to
generate visually compelling samples while maintaining a
high degree of topological fidelity. In addition, TopoCell-
Gen notably reduces multi-class cell count errors, thereby
enhancing both the precision and topological consistency
of the synthesized cellular arrangements.

Performance on Downstream Tasks. As shown in Ta-
ble 2, synthetic layouts generated by TopoCellGen consis-
tently yield the highest F1 scores for cell detection and clas-
sification tasks using UNet [22] and MCSpatNet [1] frame-
works. These results underscore TopoCellGen’s capability
to model complex spatial interactions and inter-class rela-
tionships, producing biologically plausible synthetic data
that effectively enhances model generalization and reduces
class-wise biases.

4. Conclusion
In summary, TopoCellGen presents a robust framework for
generating realistic cell topologies in digital pathology. It
accurately preserves both intra- and inter-class spatial pat-
terns, ensures cell count control, and achieves high struc-
tural fidelity. Experimental results confirm its close ap-
proximation of real tissue layouts, thereby enhancing down-
stream tasks such as cell detection and classification.
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