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Figure 1. Geolocation as a Generative Process. We use diffusion/flow matching to denoise random locations into estimates, yielding
trajectories on the Earth’s surface and location probability densities. Examples show trajectories and log-densities for images from
iNat21 [55], YFCC-100M [1], and OSV-5M [2]. Predicted: , True: .

Abstract

Global visual geolocation consists in predicting where an
image was captured anywhere on Earth. Since not all im-
ages can be localized with the same precision, this task
inherently involves a degree of ambiguity. However, exist-
ing approaches are deterministic and overlook this aspect.
In this paper, we propose the first generative approach for
visual geolocation based on diffusion and flow matching,
and an extension to Riemannian flow matching. Our model
achieves state-of-the-art performance on three visual geolo-
cation benchmarks: OpenStreetView-5M, YFCC-100M, and
iNat21. In addition, we introduce the task of probabilistic
visual geolocation, where the model predicts a probability
distribution over all locations instead of a single point.

1. Introduction

Knowing where an image was captured is crucial for appli-
cations like cultural heritage [9], forensics [3], and archive
management [40], yet most images lack geotags [15]. This
motivates the visual geolocation challenge: inferring loca-
tion from image content [19, 56]. Localization precision,

or localizability [2, 25], varies greatly (Fig. 1): landmarks
like the Eiffel Tower are precise, while featureless beaches
are ambiguous. Current methods (regression [2], classifica-
tion [57], retrieval [41]) often ignore this inherent ambiguity,
though modeling it has proven useful in vision [12, 36, 59].
Inspired by generative models like diffusion [22] and flow
matching [33], we propose a novel generative approach. We
use diffusion/flow-matching to denoise random locations
into estimates conditioned on image features, extending man-
ifold techniques [5] to operate on the Earth’s sphere. This
allows computing location likelihoods [33] and quantifying
localizability. Our approach achieves state-of-the-art accu-
racy on OpenStreetView-5M [2], iNat21 [55], and YFCC-
100M [1]. We introduce probabilistic visual geolocation
(predicting location distributions) with metrics and baselines,
demonstrating our method’s ability to capture ambiguity.

Our contributions include:

• Introducing the first diffusion and Riemannian flow
matching methods for visual geolocation.

• Extending density estimation for flow matching to geolo-
cation for likelihood/localizability computation.

• Achieving SOTA results by explicitly modeling geoloca-



x0

ϵ

xt

Ψ(xt | c)
xt

v(xt)

x0: true location
ϵ: sampled noise
xt: noisy location
ψ(xt | c): prediction
v(xt): velocity field

Diffusion

xt =
√

1− κ(t)x0 +
√
κ(t)ϵ

LD = ∥ψ(xt | c)− ϵ∥2

Flow Matching

xt = (1− κ(t))x0 + κ(t)ϵ

LFM = ∥ψ(xt | c)− v(xt)∥2

Riemannian Flow Matching

xt = expx0

(
κ(t) logx0

(ϵ)
)

LRFM = ∥ψ(xt | c)− v(xt)∥2xt

κ(t): noise scheduler

(a)

c

ϕ

· · ·
t = 1 t = 0.99 t = 0

ϵ

Ψ Ψ ODE Solver

predicted coordinates

(b)

Figure 2. (a) Generative Framework. Comparison of diffusion R3, flow matching R3, and Riemannian flow matching S2, with their
noising processes and losses. (b) Inference Pipeline. An image is embedded, noise is sampled, and iterative denoising from t = 1 to 0
using reverse diffusion/flow matching yields the predicted location. The model can also output a probability distribution via an ODE.

tion ambiguity.
• Proposing the probabilistic visual geolocation task with

metrics and baselines.

2. Related Work

Visual geolocation [20] predicts image coordinates using
retrieval (handcrafted [19, 35, 41] or deep features [56]),
classification over global cells (grids [57], adaptive [7], se-
mantic [53], admin [18, 46]), or hybrid methods [2, 18,
28, 56]. Uncertainty estimation [27], vital for localiza-
tion [11, 12, 29, 36, 43, 54], leverages Bayesian [26, 37, 60]
or distribution prediction [25] techniques. Generative mod-
els, including diffusion [8, 21, 22, 44, 45, 47, 48, 50, 52]
and flow matching [16, 32], excel at modeling uncer-
tainty [4, 14, 24, 31, 34, 39, 58], learning on manifolds [6],
and are increasingly adapted for discriminative tasks [30].
We propose leveraging their ability to learn the data distribu-
tion manifold for superior visual geolocation.

3. Method

We first present our diffusion-based approach (Sec. 3.1) and
extend it to Riemannian flow matching (Sec. 3.2), see Fig. 2.
We then describe predicting location distributions (Sec. 3.3)
and detail implementation choices (Sec. 3.4).

Notations. Given an image c, we predict its location x0
on Earth, modeled as the unit sphere S2 ⊂ R3. We aim to
model the conditional distribution p(y | c) for any y ∈ S2.
ϵ denotes noise, xt noisy coordinates at time t, and ψ the
network to optimize.

3.1. Geographic Diffusion

Training. We adapt diffusion models [22, 52] for ge-
olocation. Given a coordinate-image pair (x0, c) from a
dataset Ω of geotagged images, and random coordinates ϵ
from N (0, I3) ∈ R3, we define noisy coordinates xt =√
1− κ(t)x0 +

√
κ(t)ϵ, where κ(t) : [0, 1] → [0, 1] with

κ(0) = 0 and κ(1) = 1 is the noise scheduler. We train

ψ(xt | c) to predict ϵ by minimizing the diffusion loss:

LD = Ex0,c,ϵ,t

[
∥ψ(xt | c)− ϵ∥2

]
, (1)

where the expectation is over (x0, c) ∼ Ω, ϵ ∼ N (0, I), and
t ∼ U [0, 1], the uniform distribution over [0, 1].

Inference. To predict the likely locations for a new image c,
we start by sampling a random coordinate ϵ ∼ N (0, I) and
initialize x1 = ϵ. We then iteratively refine the coordinate xt
over N timesteps from t = 1 to t = 0 using the Denoising
Diffusion Implicit Models (DDIM) sampling procedure [51].
At the end of the denoising process (t = 0), we project the
predicted location to the the Earth’s surface S2. See Fig. 2
for an illustration of the inference process.

3.2. Extension to Riemannian Flow Matching
We extend our approach to flow matching [33], first on R3,
then on the sphere S2.

Flow Matching in R3. We define a mapping from the true
coordinates x0 to random noise ϵ: xt = (1−κ(t))x0+κ(t)ϵ,
inducing the velocity field v(xt) = dxt

dt = κ̇(t)(ϵ − x0) ,
where κ̇ the derivative of κ with respect to t. We train ψ to
predict this velocity field conditionally to the image c:

LFM = Ex0,c,ϵ,t

[
∥ψ(xt | c)− v(xt)∥2

]
, (2)

with the expectation taken over the same distributions as in
Eq. (1). During inference, we solve the Ordinary Differential
Equation (ODE) initialized at a random coordinate ϵ, inte-
grating backward from t = 1 to t = 0 using the predicted
velocity field ψ(xt | c). At the end of the integration, we
project x0 onto the sphere.

Riemannian Flow Matching on the Sphere. Since our data
lies on the sphere S2, we use Riemanian flow matching [5]
to constrain the flow matching process to S2. This implies
three conditions: (i) all true coordinates x0 lie on S2, which
is naturally satisfied since we are working with coordinates
on the Earth’s surface; (ii) the noise samples ϵ lie on S2,
which we achieved by sampling ϵ uniformly on S2; and (iii)



the noisy coordinates xt remain on S2. We define the noisy
coordinates along the geodesic between the true coordinate
x0 and the noise sample ϵ, parameterized by κ(t): xt =
expx0

(
κ(t) logx0

(ϵ)
)
, where logx0

is the logarithmic map
mapping point of S2 to the tangent space at x0, and expx0

is the exponential map, mapping tangent vectors back to
the manifold. This parametrization induces a velocity field
v(xt) defined on the tangent space of xt: v(xt) = κ̇(t) ·
D(xt) , where D(xt) is the tangent vector at xt pointing
along the geodesic from x0 to ϵ, with magnitude equal to the
geodesic distance between x0 and ϵ. We train our model ψ
to approximate this velocity field by minimizing

LRFM = Ex0,c,ϵ,t

[
∥ψ(xt|c)− v(xt)∥2xt

]
, (3)

with (x0, c) ∼ Ω, ϵ ∼ U(S2) t ∼ U [0, 1], and ∥·∥xt
denotes

the norm induced by the Riemannian metric on the tangent
space at xt. During inference, we solve the ODE starting
from a random point ϵ ∈ S2 and integrating backward from
t = 1 to t = 0 using the predicted velocity and project-
ing the iterates on the manifold at each step. This ensures
that the trajectory remains on the sphere S2 throughout the
integration process.

3.3. Guidance and Density Prediction
We adapt classifier-free guidance [23] and compute location
likelihoods p(y | c).
Guided Geolocation. Train ψ on both p(y | c) and p(y|∅)
by randomly dropping condition c. Inference uses adjusted
velocity ψ̂(xt | c) = ψ(xt | c) + ω(ψ(xt | c)− ψ(xt | ∅)),
with guidance scale ω ≥ 0. ω > 0 sharpens conditioning.

Predicting Distributions. Following [33], we compute
log p(y | c) by solving an ODE system derived from mass
conservation principles. For a location y, solve for (xt, f(t))
from t = 0 to 1:

d

dt

[
xt
f(t)

]
=

[
ψ(x(t) | c)

−div ψ(xt | c)

]
with

[
x0
f(0)

]
=

[
y
0

]
,

(4)

where f(t) accumulates negative divergence. Then log p(y |
c) = log pϵ(x(1) | c)− f(1), with pϵ the noise distribution.

3.4. Implementation

Scheduler. We use a skewed sigmoid scheduler κ(t) =
σ(α)−σ(α+t(β−α))

σ(α)−σ(β) (with α = −3, β = 7) that prioritizes
early timesteps (closer to x0) to focus on fine-grained cues,
where σ(t) = 1/(1 + exp(−t)) is the sigmoid function.

Model Architecture. 6 Blocks use MLPs w/ GELU and
AdaLN for conditioning. We input noisy coordinates xt,
embedding c (from frozen ϕ), and PE features of κ(t).

Table 1. Geolocation Performance. Comparison of geolocation
precision for traditional, generative, and our proposed approaches.

OSV-5M [2] iNat21 [55]

geos. ↑ dist ↓ accuracy ↑ (in %) dist ↓
/5000 (km) country region city (km)

de
te

rm
in

is
tic SC 0-shot [17] 2273 2854 38.4 20.8 14.8

Regression [2] 3028 1481 56.5 16.3 0.7
ISNs [38] 3331 2308 66.8 39.4 4.2
Hybrid [2] 3361 1814 68.0 39.4 5.9
SC Retrieval [17] 3597 1386 73.4 45.8 19.9

ge
ne

ra
tiv

e

Uniform 131 10052 2.4 0.1 0.0 10,010
vMF 2776 2439 52.7 17.2 0.6 6270
vMFMix [25] 1746 5662 34.2 11.1 0.3 4701
Diff R3 (ours) 3762 1123 75.9 40.9 3.6 3057
FM R3 (ours) 3688 1149 74.9 40.0 4.2 2942
RFM S2 (ours) 3767 1069 76.2 44.2 5.4 2500

YFCC-4k [1, 56]

geos. ↑ dist ↓ accuracy ↑ (in %)

/5000 (km) 25km 200km 750km 2500km

de
te

rm
in

is
tic

PlaNet [57] 14.3 22.2 36.4 55.8
CPlaNet [49] 14.8 21.9 36.4 55.5
ISNs [38] 16.5 24.2 37.5 54.9
Translocator [46] 18.6 27.0 41.1 60.4
GeoDecoder [7] 24.4 33.9 50.0 68.7
PIGEON [18] 24.4 40.6 62.2 77.7

ge
ne

ra
tiv

e

Uniform 131.2 10052 0.0 0.0 0.3 3.8
vMF 1847 3563 4.8 15.0 30.9 53.4
vMFMix [25] 1356 4394 0.4 8.8 20.9 41.0
Diff R3 (ours) 2845 2461 11.1 37.7 54.7 71.9
FM R3 (ours) 2838 2514 22.1 35.0 53.2 73.1
RFM S2 (ours) 2889 2461 23.7 36.4 54.5 73.6
RFM10M S2 (ours) 3210 2058 33.5 45.3 61.1 77.7

4. Experiments
We evaluate global visual geolocation in Sec. 4.1, and proba-
bilistic visual geolocation in Sec. 4.2.
Datasets: We use OpenStreetView-5M (OSV-5M) [2] (5M
street views), iNat21 [55] (2.7M animal images), and YFCC
[1] (48M geotagged images, evaluated on YFCC4k [56]).

Model Parameterization. We evaluate our three genera-
tive approaches: diffusion and flow matching in R3 (Diff
R3 and FM R3), and Riemannian Flow-Matching on the
sphere (RFM S2). Models train for 1M iterations (except
RFM10M S2 at 10M) on respective dataset training sets.
Backbone ϕ is DINOv2-L [42] w/ registers [10], except
OSV-5M uses StreetCLIP [17] ViT-L [13] (SC). Network ψ
has 36M params (9.2M for iNat21). Guidance scale ω = 2
for location prediction, ω = 0 for distribution (Sec. 4.2).

4.1. Visual Geolocation Performance

Metrics. We use: Distance (Haversine km); GeoScore
(5000 exp(−δ/1492.7), [18]); Accuracy (% within coun-
try/region/city/distance).

Results. Table 1 shows our models achieve SOTA geoloca-
tion performance, surpassing existing methods and our base-
lines. Our generative approach significantly outperforms
non-retrieval methods (e.g., +406 GeoScore vs. Astruc et
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Figure 3. Estimating Localizability. We use the entropy of the predicted distribution as a proxy for the localizability of images. For each
dataset, we present examples of high, medium, and low localizability, which correlate well with human perception.

Table 2. Probabilistic Visual Geolocation. Evaluation of predicted distribution quality. Note: R3 and S2 likelihoods are not directly
comparable. Log-likelihoods/entropies can be negative for continuous distributions. Generative metrics only shown for iNat21 for space.

OSV-5M YFCC iNat21

NLL ↓ NLL ↓ NLL ↓ precision ↑ recall ↑ density ↑ coverage ↑

Uniform 1.22 1.22 1.22 0.58 0.98 0.38 0.22
vMF Regression 10.13 0.01 1.99 0.52 0.98 0.37 0.24
vMFMix 0.06 -0.04 -0.23 0.63 0.98 0.47 0.29
RFlowMatch S2 (ours) -1.51 -3.71 -1.94 0.88 0.95 0.78 0.59

Diffusion R3 (ours) 0.58 0.63 0.68 0.76 0.98 0.60 0.44
FlowMatch R3 (ours) -5.01 -7.15 -4.00 0.76 0.97 0.61 0.47

al. [2]). Longer training helps. Retrieval methods remain
better at very fine scales. Among generative models, Flow
Matching (FM) improves over Diffusion (Diff), while Rie-
mannian FM (S2) outperforms Euclidean FM (R3), high-
lighting benefits of modeling Earth’s geometry. Single vMF
is on par with regression while vMFMix overfits.

4.2. Probabilistic Visual Geolocation
Beyond predicting a single location, our model estimates
a distribution p(y | c) over locations y ∈ S2, capturing
geolocation uncertainty.

Metrics. We evaluate distribution quality using: Negative
Log-Likelihood (NLL), the average NLL per-dimension
of true locations xi under predicted distributions p(y | ci),
lower is better: NLL = − 1

3N

∑N
i=1 log2 p(xi | ci); Local-

izability, the negative entropy of p(y | c), estimated via
Monte Carlo, higher is more confident: Localizability(c) =∫
S2 p(y | c) log2 p(y | c)dy; and Generative Metrics (Pre-

cision, Recall, Density, Coverage).

Results. Table 2 shows our models achieve lower NLL than

baselines, indicating better distribution alignment. FM R3

yields better NLL than Diffusion. vMFMix improves over
single vMF, suggesting better ambiguity handling despite
lower geolocation accuracy. RFM S2 excels on generative
metrics, likely because it operates directly on the sphere,
avoiding projection errors inherent in R3 models.

Localizability. Figure 3 demonstrates that negative entropy
correlates with perceived image localizability: high scores
for distinct landmarks (c, Eiffel Tower), medium for broader
regions (f, NFL stadiums), and low for ambiguous scenes (i,
featureless beach).

5. Conclusion

We presented a generative visual geolocation method us-
ing diffusion and Riemannian flow matching on the sphere,
capturing inherent spatial ambiguity often ignored by deter-
ministic approaches. Our method achieves state-of-the-art
performance on standard benchmarks. We also introduced
probabilistic visual geolocation, demonstrating our model’s
ability to predict accurate probability distributions
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