
Decompositional Neural Scene Reconstruction with Generative Diffusion Prior

Junfeng Ni1,2 Yu Liu1,2 Ruijie Lu2,3 Zirui Zhou1

Song-Chun Zhu1,2,3 Yixin Chen2† Siyuan Huang2†

† Corresponding author 1 Tsinghua University
2 State Key Laboratory of General Artificial Intelligence, BIGAI 3 Peking University

Ours with 10 viewsObjectSDF++ with 10 views ObjectSDF++ with 100 viewsNumber of Views

Object geometry editing Object appearance editing VFX editingScene stylizationReconstructed mesh in Blender

  “Chinese style”  “A round table”   “Freeze it!”    “Pokemon style”

Figure 1. We propose DP-RECON, which capitalizes on pre-trained diffusion models for complete and decompositional neural scene
reconstruction. This approach significantly improves reconstruction quality in less captured regions, where previous methods often struggle.
Additionally, our method enables flexible text-based editing of geometry and appearance, as well as photorealistic VFX editing.

Abstract

Decompositional reconstruction of 3D scenes, with com-
plete shapes and detailed texture of all objects within, is
intriguing for downstream applications but remains chal-
lenging, particularly with sparse views as input. Recent ap-
proaches incorporate semantic or geometric regularization
to address this issue, but they suffer significant degradation
in underconstrained areas and fail to recover occluded re-
gions. We argue that the key to solving this problem lies
in supplementing missing information for these areas. To
this end, we propose DP-RECON, which employs diffusion
priors in the form of Score Distillation Sampling (SDS) to
optimize the neural representation of each individual ob-
ject under novel views. This provides additional informa-
tion for the underconstrained areas, but directly incorpo-
rating diffusion prior raises potential conflicts between the
reconstruction and generative guidance. Therefore, we fur-
ther introduce a visibility-guided approach to dynamically
adjust the per-pixel SDS loss weights. Together these com-

ponents enhance both geometry and appearance recovery
while remaining faithful to input images. Extensive experi-
ments across Replica and ScanNet++ demonstrate that our
method significantly outperforms state-of-the-art methods.
Notably, it achieves better object reconstruction under 10
views than the baselines under 100 views. Our method en-
ables seamless text-based editing for geometry and appear-
ance through SDS optimization and produces decomposed
object meshes with detailed UV maps that support photore-
alistic Visual effects (VFX) editing.

1. Introduction

3D scene reconstruction from multi-view images is a long-
standing topic in computer vision [8, 15]. Traditional meth-
ods typically represent the entire scene holistically, limiting
flexibility and downstream usability. In contrast, decompi-
tional reconstruction [10, 24] aims to break down the im-
plicit 3D representation into individual objects in the scene



and facilitate broader applications in embodied AI [1, 5],
robotics [4, 7], and more [3]. However, existing meth-
ods [13, 16, 25] in decompositional neural reconstruction
still fall short of expectations in downstream applications
to reconstruct complete 3D geometry and accurate appear-
ance (see Fig. 1), especially in less densely captured or
heavily occluded areas with sparse inputs. To address the
challenge of sparse-view reconstruction, many approaches
propose to incorporate semantic or geometric regulariza-
tions [6, 9, 17, 26]. Still, they often demonstrate signifi-
cant degradation in non-observable regions since they fail
to provide additional information for the underconstrained
areas. Thus, we believe the key is to introduce supplemen-
tary information for these areas based on the observation
from known views.

In this paper, we propose DP-RECON to facilitate the
decompositional neural reconstruction with generative dif-
fusion prior. Given multiple posed images, the neural im-
plicit representation is optimized to represent both individ-
ual objects and the background within the scene. Besides
the reconstruction loss, we employ a 2D diffusion model as
a critic to supervise the optimization of each object through
SDS [18], which iteratively refines the 3D representation
by evaluating the quality of novel views from differentiable
rendering. We use the pretrained Stable Diffusion [20], a
more general diffusion model without fine-tuning on spe-
cific datasets. We meticulously design the optimization
pipeline so that the generative prior optimizes both the ge-
ometry and appearance of each object alongside the recon-
struction loss, filling in the missing information in unob-
served and occluded regions.

However, directly integrating the diffusion prior into the
reconstruction pipeline may compromise the overall consis-
tency, particularly in observed regions, due to their potential
conflicts. Ideally, we want to preserve the visible area in the
input images while the diffusion prior completes the rest.
To alleviate this problem, we propose a novel visibility ap-
proach that models the visibility of 3D points across the in-
put views using a learnable grid. The visibility information
is derived from the accumulated transmittance in volume
rendering, enabling us to optimize the visibility grid with-
out introducing computationally intensive external visibility
priors [21]. For each novel view, the visibility map can be
rendered from this grid, which can dynamically adjust the
per-pixel SDS and rendering loss weights, benefiting both
geometry and appearance optimization stages.

Extensive experiment results on Replica [22] and Scan-
Net++ [27] demonstrate that our method significantly sur-
passes all state-of-the-art methods in both geometry and ap-
pearance reconstruction, particularly in heavily occluded re-
gions. Remarkably, with only 10 input views, our method
achieves object reconstruction quality superior to baseline
methods that rely on 100 input views for heavily occluded

scenes in Fig. 1. Our method enables seamless text-based
editing, e.g., geometry and appearance stylization, using
SDS optimization. It produces decomposed object meshes
with detailed UV maps, enabling photorealistic rendering
and VFX editing in common 3D software, thereby support-
ing various downstream applications.

In summary, our main contributions are three-fold:
• We introduce a novel method DP-RECON that incorpo-

rates generative prior into decompositional scene recon-
struction, significantly improving geometry and appear-
ance recovery, particularly in heavily occluded regions.

• We propose a visibility-guided approach to dynamically
adjust the SDS loss, alleviating the conflict between the
reconstruction objective and generative prior guidance.

• Extensive experiments demonstrate that our model sig-
nificantly enhances both geometry and appearance. Our
method enables seamless geometry and appearance edit-
ing, yielding decomposed object meshes with detailed
UV maps for broad downstream applications.

2. Method

Given a set of posed RGB images and corresponding in-
stance masks, we aim to reconstruct the geometry and ap-
pearance of objects and the background in the scene. Fig. 2
presents an overview of our proposed DP-RECON.

2.1. 3D Reconstruction with Generative Priors

The latent neural representation of the 3D scene is primarily
optimized by the reconstruction loss Lrecon derived from
volume rendering, following prior work [13, 24, 25]. How-
ever, regions with sparse capture or heavy occlusions often
lead to suboptimal geometry and appearance recovery due
to insufficient information as reconstruction guidance. To
mitigate this gap, we introduce diffusion prior to optimize
the the 3D model, both in geometry and appearance, so that
it looks realistic at novel unobserved views.

Prior-guided Geometry Optimization We adopt the de-
compositional neural implicit surface as our 3D represen-
tation, which is parameterized with a series of multi-layer
perceptrons (MLPs) with parameter θ. The rendering func-
tions serve as the image generator g(θ). At each training
iteration, we sample the j-th object and render its normal
map and mask map at a randomly sampled camera pose.
Following previous work [2, 19], we use a concatenated
map ñj of the normal and mask maps as the input for the
diffusion model to improve geometric optimization stabil-
ity. We then employ the SDS loss to compute the gradient
for updating θ as follows:

∇θLgSDS = Et,ϵ
[
w(t) (ϵ̂ϕ(zt; y, t)− ϵ)

∂z

∂ñj

∂ñj
∂θ

]
, (1)
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Figure 2. Overview of DP-RECON. We first use reconstruction loss Lrecon for decompositional neural reconstruction, followed by
the prior-guided geometry optimization stage that incorporates SDS loss Lg−v

SDS . We finally export the object meshes and optimize their
appearance with La−v

SDS . The visibility balances the guidance from prior and reconstruction by dynamically adjusting per-pixel SDS loss.

where z is the latent code of ñj . The background is also
treated as one object for geometry optimization.

Prior-guided Appearance Optimization To produce ob-
ject meshes with detailed UV maps, which are friendly for
photorealistic rendering in common 3D software and en-
able more downstream applications, we directly optimize
the mesh appearance rather than Neural Radiance Field
(NeRF)’s appearance field. More specifically, we export
the mesh for each object after the geometry optimization
stage. Using NVDiffrast [11] for differentiable mesh ren-
dering, we employ another small network ψ to predict color
for the mesh surface points. At each training iteration, the
color map cj for j-th is rendered at a randomly selected
camera view, and the appearance SDS loss is used to com-
pute the gradient for updating ψ:

∇ψLaSDS = Et,ϵ
[
w(t) (ϵ̂ϕ(zt; y, t)− ϵ)

∂z

∂cj

∂cj
∂ψ

]
, (2)

where z is the latent code of cj . Note that the color render-
ing loss from input views is also used to optimize ψ.

2.2. Visibility-guided Optimization

Score Distillation Sampling (SDS), despite its wide ap-
plication, has been shown to suffer from significant arti-
facts [12, 28], such as oversaturation, oversmoothing, and
low-diversity, and optimization instability [14, 23]. They
become even more significant when optimizing the latent
3D representation through both reconstruction and SDS
guidance, due to their potential conflict, leading to inconsis-
tencies with the observations. We address this problem by
proposing a visibility-guided approach, which adjusts ge-
ometry and appearance SDS loss based on pixel visibility
in the input view when rendered from a novel view.

Visibility Modeling We introduce a learnable visibility
grid G to model the visibility v of a 3D point p in the input
views. We employ a view-independent modeling for visi-

bility, i.e., v = G(p), as it only depends on the input views
and is independent of the ray direction from novel views.

Ideally, points observed in more input views should have
higher visibility. The accumulated transmittance T for a
3D point p represents the probability that the corresponding
ray reaches p without hitting any other particles - higher
transmittance T means greater visibility probability in the
input views. Therefore, we initialize G as zero and utilize
the T from input views to optimize the visibility grid G via:

Lv =
n∑
i=0

max(Ti −G(pi), 0). (3)

We detach the gradient of Ti to avoid the influence on the
reconstruction network. We optimize G after finishing the
decompositional reconstruction stage to ensure the accuracy
of the transmittance and freeze G in the geometry and ap-
pearance optimization stage with generative diffusion prior.

Visibility-guided SDS We obtain the visibility map V un-
der novel view by volume rendering. V for a ray r is cal-
culated as V (r) =

∑n−1
i=0 Tiαivi. The visibility weighting

function wv(z) is calculated as:

wv(z) =

{
w0 +m0V (z) if V (z) ≤ τ

w1 +m1V (z) if V (z) > τ
, (4)

where w and m are piecewise linear coefficients, V (z) de-
notes the pixel-wise visibility associated with latent z, and
τ a threshold separating high and low visibility area. We
reduce the SDS loss weight in high visibility regions to en-
hance reconstruction guidance while increasing SDS loss
weight in low visibility regions for higher generative prior
guidance. Then we rewrite Eq. (1) and Eq. (2) as:

∇θLg−vSDS = Et,ϵ
[
wv(z)w(t) (ϵ̂ϕ(zt; y, t)− ϵ) ∂z

∂nj

∂nj

∂θ

]
∇ψLa−vSDS = Et,ϵ

[
wv(z)w(t) (ϵ̂ϕ(zt; y, t)− ϵ) ∂z

∂cj

∂cj
∂ψ

] (5)
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Figure 3. Qualitative comparison of 10-view reconstruction.

Table 1. Decompositional object reconstruction.

Method
Object Reconstruction BG Reconstruction

CD↓ F-Score ↑ NC↑ mIoU↑ CD↓ F-Score ↑ NC↑

Replica
RICO 10.32 49.26 61.27 71.21 13.35 39.73 85.32
ObjectSDF++ 7.49 56.69 64.75 71.72 10.33 44.19 86.34
Ours 5.54 67.71 73.50 88.21 9.39 46.14 92.83

ScanNet++
RICO 24.09 39.26 58.26 42.25 18.37 34.72 78.26
ObjectSDF++ 14.52 46.87 61.57 45.73 13.20 38.92 80.47
Ours 5.03 66.55 72.91 70.01 11.51 40.12 86.24

3. Experiments

We compare DP-RECON with decompositional reconstruc-
tion baselines RICO [13] and ObjectSDF++ [25] on sparse-
view 3D reconstruction using 10 input views. Key findings
are summarized in Tab. 1, Fig. 3 and Fig. 4:
1. Our method significantly outperforms all baselines By

integrating generative priors, it achieves more accurate
reconstructions in less captured areas, more precise ob-
ject structures, smoother background reconstruction, and
fewer floating artifacts, as illustrated in Fig. 3.

2. Generative priors notably improve reconstruction in oc-
cluded regions, yielding better object structure and fewer
artifacts (e.g., the chair behind the table or background
occlusion in Fig. 3). Our visibility-guided strategy also
preserves consistency with input images in visible areas,
mitigating conflicts between the priors and observations.

3. As shown in Fig. 4, our method enables seamless text-
based editing of geometry and appearance for each ob-
ject. It also produces high-fidelity decomposed meshes
with detailed UV maps, enabling VFX workflows in
standard 3D software such as Blender.

Reconstructed mesh in Blender Object geometry editing

  “A teddy bear”

     “A fire extinguisher”

Scene stylization

    “Super Mario style”

     “Space-themed style”

VFX editing

    “Break it by a ball!”

   “Ignite it!”

Figure 4. Examples of scene editing. Our model seamlessly sup-
ports flexible text-guided editing, as well as VFX editing.
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