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Abstract

Despite proficiency in generating realistic images, cur-
rent text-to-image diffusion models often fail to render spa-
tial relationships within complex scenes faithfully, espe-
cially in scenarios involving multiple objects and relations.
This suggests that such models lack an inherent mechanism
to understand and represent the compositional spatial rela-
tions as indicated by the input text. To address this short-
fall, we introduce an innovative approach to enhance the
relational compositionality of diffusion models. In partic-
ular, our model takes scene graphs that encode object de-
scriptions and their relations as the input specification, and
generates images with a two-stage generation pipeline. It
first generates a spatial layout from the scene graph, and
then generates images conditioned on the created layouts.
In each stage, our method leverages composable diffusion
models for each individual object and relation in the scene
graph, integrating their outputs during denoising steps. Our
framework shows improved spatial compositionality on the
CLEVR dataset. Moreover, when trained on simple two-
object scenes, our model can generalize to multi-object
scenes with complex spatial relations. Leveraging compo-
sitionality, our model demonstrates potential for generating
complicated scenes with high fidelity.

1. Introduction
In recent years, deep generative models, such as GANs
and diffusion models [2, 12, 30], have made significant
strides, demonstrating versatility in diverse applications.
Applications based on large vision-language models like
DALL-E and Stable Diffusion have enabled the creation
of highly photorealistic images from textual descriptions
[23, 26, 27, 29]. These generative models excel at creating
images in various styles and scenes. However, they often
fail to accurately capture simple yet specific spatial rela-
tionships in prompts, such as “an apple on a plate, a banana
to the right.” Prior works have shown that, when given in-
put text with multiple objects, these models often resort to
an imprecise bag-of-words approach [9, 31, 36].
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Figure 1. Comparison of generated samples using our method and
prior works, with 4 objects specified in the prompt. SC-Diffusion
successfully generates accurate object attributes and spatial rela-
tionships, while CLEVR-Diffusion shows missing objects and in-
correct attributes, and Composable Diffusion struggles with noisi-
ness. See Appendix D for the prompt.

Our goal is to address this failure mode by enhancing
the models’ ability to learn and compose spatial relation-
ships. This spatial compositionality is a crucial desidera-
tum for generative models, as it allows users to control the
manipulation of image contents and supports generalization
to an exponentially diverse range of scenes by recomposing
learned visual features from a finite set of objects and re-
lations. Our approach improves spatial compositionality by
modularizing the diffusion process to reflect the structure of
an object-centric scene description. Specifically, we repre-
sent scenes as scene graphs comprising objects and their in-
terrelations. We present Spatially Compositional Diffusion
(SC-Diffusion), a model that accepts scene graphs encoding
object descriptions and their relations as input, and gener-
ates images using a two-stage generation pipeline. Stage I
generates a layout, and Stage II produces the final image
guided by this layout. By incorporating compositionality
into the model’s structure, we enable not only faithful im-
age generation but also generalization across more complex
scenes with more objects and relationships.

2. Related Works

Controllable text-to-image generation Recent text-to-
image generation models, like Imagen [29] and DALL-E
2 [26], have shown impressive realism and stylistic flex-
ibility, primarily using diffusion-based generative models
[12]. Latent diffusion models (LDMs) improve upon these
with enhanced generation fidelity and efficiency [27]. De-



spite their advancements, challenges remain in generat-
ing accurate representations from complex prompts, par-
ticularly in maintaining spatial and semantic relationships
[9, 21, 31, 36]. Efforts to increase control have led to the
development of techniques such as cross-attention layer ma-
nipulation [10], mask-guided edits [3], and zero-shot edit-
ing [7]. These methods help navigate the limitations of ini-
tial generations, especially for long and complex prompts.

Spatially conditioned image generation Spatial accuracy
in image generation has been explored through structured
visual inputs like segmentation maps and layouts [6, 24, 39].
Diffusion models have been extended to use structured in-
puts like bounding box layouts and edge maps for more
grounded generation [17, 32, 37]. Additionally, the use
of large language models (LLMs) in creating visual pri-
ors from text [8, 18, 38] and using scene graphs as inputs
[16, 33] have shown promise. However, these methods still
struggle with complex prompts with complete descriptions
of scenes due to their holistic rather than compositional pro-
cessing of inputs. RPG Diffusion [34] is a prime example.
It can leverage vision language models to iteratively plan
detailed layouts that enforce 2D spatial accuracy, but the
complementary regional diffusion does not guarantee spa-
tial accuracy with heavily overlapping layouts as no form
of spatial reasoning is embedded in the diffusion process.

Composable diffusion models Addressing the limitations
of spatial and semantic complexity, several works have ex-
plored composable diffusion models. Recent work involves
parametrizing diffusion models as energy-based models for
simple compositions [4, 5, 19, 20]. Approaches such as
Collaborative Diffusion [13] and MultiDiffusion [1] suggest
using an orchestrator module or treating composition as an
optimization problem. These models offer higher-level se-
mantic juxtapositions but still face challenges in composing
specific objects and relations in detailed scenes.

3. Spatially Compositional Diffusion

We study the text-to-image generation task and simplify this
setting by considering every scene as primarily composed
of a set of objects and a set of relations between the ob-
jects. The input to our method is a scene graph [14] (See
Figure 2), and our model outputs an image x. This elimi-
nates some ambiguity from natural language while preserv-
ing flexibility, and, in practice, we can conceivably get the
scene graphs from a language-to-code model. More con-
cretely, given a set of all objects Co (e.g. “small metal red
ball”) and relations Cr (e.g. “on”), a scene graph is the tu-
ple (V, E) where V = {oi ∈ Co}ni=1 is a set of objects, and
E = {eij = (oi, rij , oj), rij ∈ Cr}1≤i,j≤n is a set of re-
lationships between objects. It is the set of directed edges
from oi to oj , analogous to (subject, predicate, object). Note
that objects can be general subsets of a scene.
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Figure 2. An example of a scene graph input to SC-Diffusion.

Since current diffusion models (See appendix A) have
demonstrated strong performance in generating objects, our
main challenge under this formulation is modeling spatial
relations. Our insight is to improve spatial accuracy by en-
forcing local object relationships with the new relation de-
noiser. Due to the complexity of generating images with
accurate spatial relations, we take inspiration from recent
works and propose a two-stage generation process. The first
stage is generating a bounding box layout that satisfies the
relations in the scene graph for the final image. This al-
lows us to focus on modeling the higher-level spatial rela-
tions (e.g., “left/right”, “above/below”) without considering
pixel-level details. Once a spatially correct layout is gener-
ated, our second stage is to generate the image grounded by
the layout — the goal for this stage is to model the lower
level, more semantically complex, and spatially ambiguous
relations between overlapping objects (e.g., “front/behind”,
“holding”). Figure 3 shows the overall architecture SC-
Diffusion, and Appendix B contains more details.

Stage I: Compositional layout generation Given a scene
graph S = (O,R), we aim to generate a layout b =
(b(1), · · · ,b(n)) where for each object oi ∈ V we gener-
ate an axis-aligned bounding box b(i) ∈ R4 parameterized
as [center x, center y,width, height].

Given all the objects and relations specified in a scene
graph, we aim to learn a generative distribution p(b(i)|V, E)
of the bounding boxes. We parameterize this distribu-
tion by composing an object-conditioned diffusion model
with a relation-conditioned diffusion model. Concretely,
the object-conditioned diffusion model is a denoiser ϵOθ
that takes in the current diffusion timestep t, an object at-
tribute oi, a noisy bounding box b

(i)
t for oi, and predicts

noise over b(i)
t . The relation-conditioned diffusion model

is a separate denoiser ϵRθ that takes the current diffusion
timestep t, a directed edge eij , and the noisy bounding
boxes of the objects oi and oj in eij concatenated together
as [b

(i)
t : b

(j)
t ], and predicts noise over both bounding

boxes. For simpler notation, let the output of the relation-
conditioned denoiser ϵRθ ([b

(i)
t : b

(j)
t ]|eij , t) be denoted as

[ϵRθ (b
(i)
t |eij , t) : ϵRθ (b

(j)
t |eij , t)]. Under the energy-based

interpretation of diffusion models [4, 5, 20], we can then
predict noise over b(i)

t by combining the denoisers with

ϵθ(b
(i)
t |V, E , t) = ϵOθ (b

(i)
t |oi, t) +

∑
eij∈E

ϵRθ (b
(i)
t |eij , t).
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Figure 3. A detailed illustration of the two-stage process and SC-Diffusion architecture. The first stage focuses on generating spatial
layouts from detailed scene graphs, utilizing separate diffusion models for individual objects and their interrelations. These layouts then
serve as inputs for the second stage, where images are generated conditioned on the spatially accurate layouts.

During training, we follow the standard diffusion proto-
col by uniformly sampling a timestep t and randomly sam-
pling a Gaussian noise ϵ, then optimizing the following loss:

Lmse = ||ϵ− ϵθ(
√
1− βtb+

√
βtϵ | V, E , t)||22,

where βt is the diffusion noise schedule [12] and b is the
ground truth layout.

Stage II: Compositional layout-guided image generation
Our goal is to modularly generate an image x ∈ RH×W×3

conditioned on the generated layout b = (b(1), · · · ,b(n))
and following the object and relation attributes. We assume
that the layout is accurate here and focus on enforcing the
relational accuracy inside overlapping bounding boxes.

Formally, we parameterize the generative distribution
p(x|V, E ,b) with the composition of three diffusion mod-
els: object-conditioned diffusion, relation-conditioned dif-
fusion, and unconditional diffusion. Given a timestep t,
an object attribute oi, a noisy image xt, and a bounding
box b(i), the object denoiser ϵOϕ predicts noise over xt.
To ensure that the object denoiser only denoises within the
relevant region in the layout, we construct a binary mask
m(i) ∈ RH×W×3 from the bounding box and apply the
mask to the denoiser output. For brevity, let us denote

ηOoi = ϵOϕ (xt|oi,b(i), t)⊗m(i),

where ⊗ is the Hadamard product. Similarly, the clipped
relation denoiser can be written as the following:

ηReij = ϵRϕ (xt|eij ,b(i),b(j), t)⊗ (m(i) ∪m(j)).

The unconditional background denoiser ϵBϕ simply predicts
the noise over xt given xt and t for the purpose of denoising
the background components that are not affected by the ob-
ject and relation denoiser, ensuring a cohesive result. Com-
posing the three diffusions together by adding the predicted

noises, we arrive at the combined denoiser ϵϕ:

ϵϕ(xt|V,E,b, t) = ϵBϕ (xt|t) +
∑
oi∈V

ηOoi +
∑
eij∈E

ηReij

Similar to Stage I, during training, we randomly sample
a timestep t and Gaussian noise ϵ, then optimize with the
loss

Lmse = ||ϵ− ϵϕ(
√
1− βtx+

√
βtϵ | V, E ,b, t)||22, (1)

where βt is the diffusion noise schedule and x is the ground
truth image.

4. Experiments

Relational CLEVR We present comparisons of our
model’s performance compared to that of prior methods on
a variation of CLEVR [15]. In addition to the regular re-
lations of left/right and front/behind, this variation also in-
cludes above/below. This introduces more complex spatial
relationships by highlighting the 3D nature of the dataset
with more overlaps and occlusions. Following prior work
[20], we generate 40,000 examples with two objects as the
train set. For evaluation, we generate 100 examples for 2,
3, 4, and 8 object scenes as the test set.1 This set-up is de-
signed to test the model’s ability to generalize to scenes with
more objects, so we train SC-Diffusion on the scenes with 2
objects only. Some baselines require calibration to prompts
of different lengths and are trained on a mixture of 1, 2, and
3 object scenes. Nonetheless, our method still demonstrates
better generalization. To assess image fidelity, we utilize
the Frechet Inception Distance (FID) metric [11]. To evalu-
ate spatial accuracy, we use the Scene Relation Score (RA)
[32] and introduce an object accuracy metric (OA) (details
in Appendix C).

1Due to the cost of the OpenAI API required for LayoutGPT [8]



Table 1. Overview of quantitative results. Our model consistently outperforms all baselines in object accuracy (OA), relational accuracy
(RA), and Fréchet Inception Distance (FID) metrics, demonstrating substantial improvements as the number of objects in a scene increases.
These results underscore our model’s superior generalization ability in scenes with high spatial complexity.

Method 2 Objects 3 Objects 4 Objects 8 Objects

OA (%) RA (%) FID ↓ OA (%) RA (%) FID ↓ OA (%) RA (%) FID ↓ OA (%) RA (%) FID ↓

LayoutGPT + GLIGEN 19.0 9.0 157.2 16.3 9.2 157.3 14.0 7.9 161.8 14.7 3.3 222.0
Composable Diffusion 74.4 51.5 87.2 75.3 46.5 88.6 53.7 45.7 161.4 22.8 14.0 262.0
CLEVR Diffusion 69.5 73.4 50.9 35.7 22.1 50.4 24.0 9.5 46.9 14.2 4.0 60.4
SC-Diffusion (Ours) 100.0 99.6 43.7 98.6 98.5 43.9 93.8 93.0 43.8 42.6 27.3 54.8

Our method outperforms baselines in all metrics, as seen
in Table 1. For image quality, SC-Diffusion has the low-
est FID score for all scene complexities. Unsurprisingly,
models not trained explicitly on CLEVR (e.g., LayoutGPT
+ GLIGEN) suffer the most in this metric. Composable
Diffusion’s FID score monotonically increases with more
objects, whereas CLEVR diffusion remains consistent until
the 8-object scenes.

In terms of relational accuracy, SC-Diffusion is the only
method that successfully generalizes to scenes with more
objects. While the RA and OA for all the baselines plum-
met to below 55% in 4 object scenes, our method main-
tains above 93%. Composable Diffusion starts off with the
second highest accuracy, but as the number of objects in-
creases, the OA steeply declines, and as a result, the RA
also drops. CLEVR Diffusion performs decently in 2 and
3 object scenes, but as the scene complexity increases to
out-of-training distribution, the OA drops significantly.

Qualitative examples (Appendix E) explain the differ-
ences in generalization. For Composable Diffusion, the
images become overwhelmingly noisy with more object
scenes. This explains the drop in OA, and thus RA, as it
struggles to generate even the objects. It shows the im-
portance of grounding the composition in objects and re-
lations instead of only composing energy densities in a gen-
eral manner (e.g., set operations) [20]. CLEVR Diffusion
results are valid with 2,3 object scenes because they are in
distribution, but the struggle to generate more than 4 objects
in scenes highlights its struggle to generalize.

Ablation We investigate the contribution of Stage I and
Stage II in this section. Performance is evaluated using
the Relational Accuracy metric on the generated bounding
boxes or images. For Stage I, we assess the importance of
relational diffusion by comparing our model against object-
only diffusion and LayoutGPT. For Stage II, we compare
our model against object-only diffusion, LayoutGPT, and
GLIGEN [17]. We present the Relational Accuracy of each
setting across scenes with varying numbers of object results
in Table 2. The experimental results suggest that, in both
stages, incorporating relational attributes significantly im-
proves the model’s ability to maintain spatial relations, es-
pecially as the scene complexity increases.

Table 2. This table displays an ablation study assessing the perfor-
mance of our model’s two stages against alternatives (Object-only
diffusion, LayoutGPT, GLIGEN) across different scene complex-
ities (2 Obj, 3 Obj, 4 Obj, and 8 Obj). The results, measured
in accuracy percentages, underscore the superior efficacy of our
method’s components. Substituting either stage with alternative
methods leads to significant performance declines.

Stage I Stage II 2 Obj 3 Obj 4 Obj 8 Obj

Ours Ours 99.6% 98.5% 93.0% 27.3%
LayoutGPT Ours 95.2% 42.5% 21.3% 14.5%
GT Obj Only 99.9% 91.3% 42.9% 16.2%
GT GLIGEN 8.0% 10.1% 7.6% 5.6%
GT Ours 99.8% 98.8% 97.2% 73.3%

5. Discussion and Conclusion
We propose a framework designed to improve the spatial
compositionality of diffusion models for text-to-image gen-
eration. Through a scene-graph-based input encoding and
a two-stage generation process that uses bounding boxes as
an intermediate representation, our approach highlights the
potential of injecting modularity into generative models to
improve relational compositionality. Therefore, it enables a
faithful and controllable generation of complex scenes.

One of the inherent limitations of our approach stems
from the usage of multiple denoisers, which leads to a sharp
increase in the resources needed for inference as the scene
complexity increases. However, recent advancements in the
distillation [22, 35] and sampling optimization of diffusion
models present viable pathways for mitigating these issues.

Our work serves as a proof of concept, illustrating the
feasibility and benefits of embedding compositional reason-
ing within the image generation process. One direction for
future work is to extend our framework to more complete
real-world images. Given the abilities of large pretrained
generative models such as Stable Diffusion and Diffusion
Transformers to generate faithful objects and relations in
the real world, a potential method is to finetune these mod-
els as object and relational denoisers. By using a similar
compositional pipeline, one could improve the generative
of real-world complex scenes.
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Supplementary Material for Spatially Compositional Diffusion

A. Background on Diffusion Models
In the realm of generative modeling, diffusion probabilis-
tic models have achieved remarkable performance recently.
These models iteratively introduce noise into an initial sam-
ple X0 drawn from a predefined data distribution q(X0).
This process is controlled by a predefined variance sched-
ule {βt}Tt=0, which dictates the incremental transformations
as q(Xt|Xt−1) = N (Xt;

√
1− βtXt−1, βtI). The noise

added at each step is Gaussian and always implemented by
a well-known reparameterization trick:

Xt ≈ q(Xt|X0); Xt =
√
αtX0 + ϵ

√
1− αt

where αt = 1− βt, ᾱt =
∏t

s=0 αs, and ϵ ∼ N (0, I).
The reverse diffusion process is adopted to generate im-

ages. Inverting the diffusion process involves learning the
conditional distribution q(Xt−1|Xt) through a neural net-
work pθ(Xt−1|Xt) ≈ q(Xt−1|Xt). This allows for an ap-
proximate sampling from q(X0) by initiating the process
with a noise sample XT ∼ q(XT ), followed by iterative
sampling from q(Xt−1|Xt). When the sampling step size is
adequately small, the conditional distribution q(Xt−1|Xt)
can be closely approximated by an isotropic Gaussian with
a fixed small covariance. Consequently, one only needs to
predict the mean of q(Xt−1|Xt).

B. Implementation Details
Since our object and relation categories were small, we
chose to first perform label encoding on the scene graph,
but one could also use any pre-trained encoders like CLIP
[25] for an open vocabulary set. This resulted in each
object attribute oi ∈ R4 being represented as feature
vectors [material, size, shape, color], and each directed edge
(oi, rij , oj) ∈ R9 as [oi : oj : relation] .

Stage I Both the object and relation denoisers share the
same underlying MLP-based architecture. The timestep is
encoded through a Sinusoidal Positional Embedding and
then fed into an MLP to get a time embedding. Then, the
core component is an MLP with four fully connected lay-
ers. The condition is concatenated with the input before
feeding into the first fully connected layer. In the sub-
sequent fully connected layers, the temporal conditioning
is integrated via two additional fully connected layers that
modulate the activations with a learnable affine transforma-
tion dependent on the time embedding. The final fully-
connected layer maps from the hidden dimension back to
the output dimension. In the combined model, we initialize

the same denoiser with different conditioning dimensions.
In the forward pass, we keep the noisy bounding boxes in
the layout in the batch dimension and apply the object and
relation denoiser in parallel. Since the data distribution we
are modeling is very low dimensional, the MLP-based ar-
chitecture is sufficient.

Stage II In the image generation pipeline, all denoisers
share the underlying architecture of a U-Net [28] modified
for conditional input, similar to the denoisers seen in prior
text-to-image diffusion models [12, 27, 29].

Since we wanted to condition not just on the object and
relation encoding but also the corresponding bounding box
coordinates for the objects, we concatenated them together
as conditions: for object denoiser, the condition becomes
[oi : b

(i)] ∈ R8; for relation denoiser, the condition is [oi :
b(i) : oj : b

(j) : rij ] ∈ R17.
We continue using Sinusoidal Positional Encoding fol-

lowed by an MLP to get time embedding from timesteps.
To inject the condition into the U-Net, we simply feed the
condition into another MLP and combine it with the tempo-
ral conditioning through the sum.

In the combined model, we simply initiate three U-Nets
for three denoisers with varying conditional dimensions. In
the forward pass, we again apply the object denoiser and
relational denoiser in parallel, applying the corresponding
mask to their outputs, and sum the noises together along
with the background denoiser outputs.

C. Evaluation Metrics

FID score uses a pre-trained inception model to extract fea-
tures for ground truth and generated datasets and measures
their distributional similarity. To evaluate the generation
quality on an object level, we introduce an object accuracy
metric (OA). This involves pretraining an object classifier
on the training dataset to identify each object’s attributes,
applying this classifier to the generated images, and calcu-
lating the mean accuracy of attribute alignment with spec-
ified requirements. To evaluate the plausibility of the ob-
ject relations within the scene, we adapt the Scene Relation
Score (SRS) metric proposed by [32]. We train a relational
predictor on the ground truth dataset, which, given the fea-
tures of two objects, predicts the relation between them. We
apply this classifier to all relations in the ground truth scene
graph to report the mean relational accuracy. This metric
evaluates the given generative model’s ability to recover the
specified object relations.



D. Prompt
We include the prompt used below in text form.

“a large green rubber sphere to the left of a small
brown metal cube, AND a large green rubber
sphere in front of a small brown metal cube, AND
a large green rubber sphere to the left of a small
red metal cylinder, AND a large green rubber
sphere behind a small red metal cylinder, AND
a large green rubber sphere to the left of a small
green rubber cylinder, AND a large green rubber
sphere in front of a small green rubber cylinder,
AND a small brown metal cube to the right of a
large green rubber sphere, AND a small brown
metal cube behind a large green rubber sphere,
AND a small brown metal cube to the right of
a small red metal cylinder, AND a small brown
metal cube behind a small red metal cylinder,
AND a small brown metal cube to the right of a
small green rubber cylinder, AND a small brown
metal cube in front of a small green rubber cylin-
der, AND a small red metal cylinder to the right
of a large green rubber sphere, AND a small red
metal cylinder in front of a large green rubber
sphere, AND a small red metal cylinder to the
left of a small brown metal cube, AND a small
red metal cylinder in front of a small brown metal
cube, AND a small red metal cylinder to the left
of a small green rubber cylinder, AND a small
red metal cylinder in front of a small green rub-
ber cylinder, AND a small green rubber cylinder
to the right of a large green rubber sphere, AND a
small green rubber cylinder behind a large green
rubber sphere, AND a small green rubber cylinder
to the left of a small brown metal cube, AND a
small green rubber cylinder behind a small brown
metal cube, AND a small green rubber cylinder
to the right of a small red metal cylinder, AND
a small green rubber cylinder behind a small red
metal cylinder”

E. Generation Samples
In Figure 4, 5, 6 and 7, we present additional qualitative
examples of Relational CLEVR.



Figure 4. Additional qualitative examples from SC-Diffusion. Examples are sampled using the DDPM sampler. The first two rows are
samples of two-object scenes; the next two are three-object scenes, then four-object and eight-object, respectively.



Figure 5. Additional qualitative examples from CLEVR-Diffusion. Examples are sampled using the DDPM sampler. The first two rows
are samples of two-object scenes; the next two are three-object scenes, then four-object and eight-object, respectively.



Figure 6. Additional qualitative examples from Composable Diffusion[20]. Examples are sampled using the DDPM sampler. The first
two rows are samples of two-object scenes; the next two are three-object scenes; then four-object and eight-object, respectively.



Figure 7. Additional qualitative examples from LayoutGPT + GLIGEN [8, 17]. Examples are sampled using the DDPM sampler. The
first two rows are samples of two-object scenes; the next two are three-object scenes; then four-object and eight-object, respectively. The
black images indicate LayoutGPT’s layout generation failure.
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