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Abstract

Diffusion probabilistic models (DPMs) have become the
state-of-the-art in high-quality image generation. However,
DPMs have an arbitrary noisy latent space with no inter-
pretable or controllable semantics. Although there has been
significant research effort to improve image sample quality,
there is little work on representation-enabled controllable
generation using diffusion models. Specifically, controllable
counterfactual generation using DPMs has been an under-
explored area. In this work, we propose CausalDiffAE, a
diffusion-based causal representation learning framework
to enable counterfactual generation according to a spec-
ified causal model. We encode the high-dimensional im-
age into a low-dimensional representation corresponding
to causally related semantic factors. We model causal de-
pendencies among latent variables using neural structural
causal models and ensure their disentanglement via an align-
ment prior. Given a pre-trained CausalDiffAE, we propose a
DDIM-based counterfactual generation procedure subject
to do-interventions. We empirically show that CausalDif-
fAE learns a disentangled latent space and is capable of
generating high-quality counterfactual images.

1. Introduction

Diffusion probabilistic models (DPMs) [7, 11, 22–24] are
a class of likelihood-based generative models that have
achieved remarkable successes in the generation of high-
resolution images with many large-scale implementations
such as DALLE-2 [17], Stable Diffusion [18], and Imagen
[19]. Thus, there has been great interest in evaluating the ca-
pabilities of diffusion models. Two of the most promising ap-
proaches are formulated as discrete-time [7] and continuous-
time [24] step-wise perturbations of the data distribution. A
model is then trained to estimate the reverse process which
transforms noisy samples to samples from the underlying
data distribution. Representation learning has been an in-

tegral component of generative models such as GANs [5]
and VAEs [9] for extracting robust and interpretable features
from complex data [1, 16, 21]. Recently, a thrust of research
has focused on whether DPMs can be used to extract a se-
mantically meaningful and decodable representation that
increases the quality of and control over generated images
[12, 15]. However, there has been little work in modeling
causal relations among the semantic latent codes to learn
causal representations and enable counterfactual generation
capabilities at inference time in DPMs. Generating high-
quality counterfactual images is critical for domains such
as healthcare and medicine [10, 20]. The ability to generate
accurate counterfactual data from a causal graph obtained
from domain knowledge can significantly cut the cost of
data collection. Furthermore, reasoning about hypothetical
scenarios unseen in the training distribution can be quite
insightful for gauging the interactions among causal vari-
ables in complex systems. Given a causal graph of a system,
we study the capability of DPMs as causal representation
learners and evaluate their ability to generate counterfactuals
upon interventions on causal variables.

In this paper, we focus on learning disentangled causal
representations, where the high-level semantic factors are
causally related. We propose CausalDiffAE, a learning
framework for causal representation learning and control-
lable counterfactual generation in DPMs. Our key idea is
to learn a causal representation via a learnable stochastic
encoder and model the relations among latents via causal
mechanisms parameterized by neural networks. We formu-
late a variational objective with a label alignment prior to en-
force disentanglement of the learned causal factors. We then
utilize a conditional DDIM [23] for decoding and modeling
the stochastic variations. Intuitively, the causal representa-
tion encodes compact information that is causally relevant
for image decoding in reverse diffusion. Furthermore, the
modeling of causal relations in the latent space enables the
generation of counterfactuals upon interventions on learned
causal variables. Finally, we propose a DDIM variant for
counterfactual generation subject to do(·) interventions.



Figure 1. CausalDiffAE architecture

2. Causal Diffusion Autoencoders
The proposed framework, CausalDiffAE, consists of two
main components. Firstly, we introduce a causal encoding
scheme in the latent space as a structuring of the latent space
and a training objective of a causal representation condi-
tioned reverse diffusion process. In our formulation, we
learn a causal representation zcausal, which captures causally
relevant information, in addition to xT , which captures low-
level stochastic information. Together, the two latent vari-
ables (zcausal,xT ) capture all the detailed causal semantics
and stochasticity in the image. Secondly, given a pretrained
diffusion model from the aforementioned method, we pro-
pose a counterfactual generation algorithm that utilizes do-
interventions and the DDIM [23] sampling algorithm. The
overall framework of CausalDiffAE is shown in Figure 1.

2.1. Causal Encoding

Let x0 ∈ Rd be the observed input image. We carry out the
forward diffusion process until we have a set of T perturbed
samples {x1,x2, . . . ,xT }, each at a different noise scale.
Suppose there are n abstract causal variables that describe
the high-level semantics of the observed image. To learn a
meaningful representation, we propose to encode the input
image x0 to a low-dimensional noise encoding u ∈ Rn.
We then map the noise encoding to latent causal factors
zcausal ∈ Rn corresponding the the abstract causal variables.
In this formulation, each noise term ui is the exogenous
noise term for causal variable zi in the SCM. Let A be
the adjacency matrix encoding the causal graph among the
underlying factors. Then, we parameterize the mechanisms
between causal variables as follows

zi = fi(zpai , ui) (1)

where fi is the causal mechanism generating causal variable
zi as a function of its parents and exogenous noise term. In
practice, we can implement fi as a post-nonlinear additive
noise model such that

zi = fi(Ai ◦ z; νi) + ui (2)

This module captures the causal relations between latent
variables using neural structural causal models.

2.2. Generative Model

The forward diffusion process defines the perturbation of the
image as follows:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (3)

where βt ∈ (0, 1) is a variance parameter that controls the
step size of noise. Let αt = 1 − βt and ᾱt =

∏t
i=1 αi.

Given a high-dimensional input image x0, an auxiliary weak
supervision signal y, a latent noise encoding u, latent repre-
sentation zcausal, and a sequence of T latent representations
x1:T via forward diffusion, the CausalDiffAE generative
process can be factorized as follows:

p(x0:T ,u, zcausal|y) = pθ(x0:T |u, zcausal)p(u, zcausal|y)
(4)

where θ are the parameters of the reverse process of the con-
ditional diffusion model, p(u, zcausal|y) = p(u)p(zcausal|y),
and p(u) = N (0, I). The log-likelihood of the input data
distribution can be obtained as follows:

log p(x0,y) = log

∫
p(x0:T ,u, zcausal,y) dx1:T du dzcausal

(5)
The joint posterior distribution p(x1:T ,u, zcausal|x0,y) is
intractable, so we approximate it using a variational distri-
bution q(x1:T ,u, zcausal|x0,y) which can be factorized into
the following conditional distributions

q(x1:T ,u, zcausal|x0,y) = qϕ(zcausal,u|x0,y)

q(x1:T |u, zcausal,x0)
(6)

where ϕ are the parameters of the variational encoder net-
work.

2.3. Causal Diffusion Decoder

We use a conditional DDIM decoder that takes as input
the pair of latent variables (zcausal,xT ) to generate the
output image. We approximate the inference distribution
q(xt−1|xt,x0) by parameterizing the probabilistic decoder
via a conditional DDIM pθ(xt−1|xt, zcausal). The joint distri-
bution of the reverse generative process is defined as follows:

pθ(x0:T |zcausal) = p(xT )

T∏
t=1

pθ(xt−1|xt, zcausal) (7)

pθ(xt−1|xt, zcausal) = N (xt−1|xt, ϵθ(xt, t, zcausal)) (8)

where ϵθ is a noise prediction UNet [3]. By leveraging
the reparameterization trick, we can optimize the following
mean squared error between noise terms

Lsimple =

T∑
t=1

Et,x0,ϵ

[
∥ϵθ(xt, t, zcausal)− ϵt∥22

]
(9)



Algorithm 1 CausalDiffAE Training
Input: (image, label) pairs (x0, y)
Output: trained causal diffusion autoencoder ϵθ

1: repeat
2: x0 ∼ q(x0)
3: u ∼ qϕ(u|x0) ▷ Noise encoding
4: zcausal = {fi(ui, zpai ; νi)}

n
i=1 ▷ Causal encoding

5: t ∼ U({1, . . . , T}) ▷ Sample timestep
6: ϵ ∼ N (0, I)
7: xt =

√
αtx0 +

√
1− αtϵt ▷ Corrupt data to

sampled time
8: Take gradient step on ∇θLCausalDiffAE
9: until convergence

where ϵ ∼ N (0, I), xt =
√
αtx0 +

√
1− αtϵt, and T is

number of diffusion steps.

2.4. Learning Objective

To ensure the causal representation is disentangled, we incor-
porate label information y ∈ Rn as a prior in the variational
objective to aid in learning semantic factors and for identi-
fiability guarantees [8]. We define the following joint loss
objective:

LCausalDiffAE = Lsimple

+ γ
{
DKL(qϕ(zcausal|x0,y)∥p(zcausal|y))

+DKL(qϕ(u|x0)∥N (0, I))
}

(10)

where γ is a regularization hyperparameter similar to the
bottleneck parameter in β-VAEs [6], and the alignment prior
over latent variables is defined as the following exponential
family distribution

p(zcausal|y) =
n∏

i=1

p(zi|yi) =
n∏

i=1

N (zi;µν(yi), σ
2
ν(yi)I)

(11)
where µν and σ2

ν are functions that estimate the mean and
variance of the Gaussian, respectively. Intuitively, this prior
ensures that the learned factors are one-to-one mapped to
an indicator of the underlying ground truth factors. DiffAE
requires training a latent DDIM in the latent space of the pre-
trained autoencoder to enable sampling of latent semantic
representation. However, CausalDiffAE is formulated as a
variational objective with a stochastic encoder. Thus, we
can sample the representation from the defined prior directly
without having to train a separate diffusion model in the
latent space. The training procedure for CausalDiffAE is
outlined in Algorithm 1.

Algorithm 2 CausalDiffAE Counterfactual Generation
Input: Factual sample x0, intervention target set I with interven-
tion values c, pre-trained causal diffusion autoencoder ϵθ
Output: Counterfactual sample xCF

0

1: u ∼ qϕ(u|x0) ▷ Noise encoding
2: for i = 1 to n do ▷ in topological order
3: if i ∈ I then
4: zi = ci
5: else
6: zi = fi(ui, zpai)
7: end if
8: end for
9: z̄causal = {z1, . . . , zn} ▷ Intervened representation

10: xT ∼ N (
√
αTx0, (1− αT )I)

11: for t = T, . . . , 1 do ▷ DDIM sampling

12: xCF
t−1 =

√
ᾱt−1

(
xCF
t −

√
1−ᾱtϵθ(x

CF
t ,t,z̄causal)√

ᾱt

)
13: +

√
1− ᾱt−1ϵθ(x

CF
t , t, z̄causal)

14: end for
15: return xCF

0

2.5. Counterfactual Generation

A fundamental property of causal models is the ability to
perform interventions, facilitated by the do(·) operator, and
observe changes to a system. In generative models, this
enables the sampling of counterfactual data. Given a pre-
trained CausalDiffAE, we can controllably manipulate any
factor of variation, propagate the causal effects to descen-
dants, and perform reverse diffusion to sample from the
counterfactual distribution. Algorithm 2 shows the process
of generating counterfactuals from a trained CausalDiffAE,
where x0 refers to the factual observation and xCF

0 refers to
the generated counterfactual sample. We utilize the DDIM
sampling algorithm to ensure the stochastic noise xT is a
deterministic encoding to enable semantic manipulations. In
lines 12-13, we use the DDIM non-Markovian deterministic
generative process to generate counterfactual instances.

3. Experiments

We investigate the generative capability of the proposed
CausalDiffAE model. We compare our model with Causal-
VAE [25], class-conditional diffusion model (CCDM) [11],
and diffusion autoencoder (DiffAE) [15]. We evaluate dis-
entanglement of the learned latent space and the quality of
generated counterfactuals on visual datasets. We run exper-
iments on MorphoMNIST [2, 13], where thickness causes
intensity, and Pendulum [25], where pendulum angle and
light position cause shadow length and position. We note
that since the latent space of DiffAE does not allow pre-
cise control over variables, we modify DiffAE to align the
representation to be disentangled (DisentangledDiffAE).



(a) MorphoMNIST results (b) Pendulum results

Figure 2. Counterfactual trajectories generated for (a) MorphoMNIST and (b) Pendulum datasets with fully supervised model

Table 1. DCI disentanglement

Dataset Model DCI ↑

MorphoMNIST CausalVAE 0.7838
DiffAE 0.3578
CausalDiffAE (Ours) 0.9934

Pendulum CausalVAE 0.8850
DiffAE 0.3525
CausalDiffAE (Ours) 0.9995

3.1. Disentanglement

We are often interested in utilizing learned representations
for downstream tasks. Thus, we evaluate to what extent a
diffusion-based decoder helps to disentangle the latent fac-
tors of variation compared to standard VAE-based methods.
We use the DCI disentanglement metric [4], which measures
the level of one-to-one correspondence to the ground truth
factors. A high DCI score also suggests the effectiveness of
controllable generation. In the context of a causal represen-
tation, this means that we can intervene on latent codes in
an isolated fashion without any entanglements (i.e., two dif-
ferent factors are encoded in separate latent codes). We find
that CausalDiffAE can disentangle the factors to a higher
degree than CausalVAE and DiffAE, as shown in Table 1.
We evaluate representation disentanglement of the original
DiffAE model [15] since it learns an arbitrary representation.

3.2. Qualitative Evaluation

We show qualitative counterfactual generation results of
CausalDiffAE compared to other baseline models. The dis-
tinction between a conditional and causal model lies in the
difference between conditioning and intervening. When we
condition, we narrow down the scope of possibilities. When
we intervene, we fix the value of a variable and compute
downstream causal effects. For example, increasing the

shadow length of the pendulum system with other factors
unchanged produces a counterfactual that does not exist in
the training distribution. Sampling from a conditional model
will change the angle of the pendulum to generate an image
with a longer shadow, as shown in Figure 2b. Semantic
manipulations in DiffAE [15] are done as a post-processing
step by training a linear classifier and performing linear in-
terpolation in the latent space. However, such a method is
not compatible with interventions. For a fair comparison
in counterfactual generation, we extend the DiffAE to learn
disentangled factors through an alignment prior, similar to
CausalDiffAE. We observe that CCDM and DisentangledDif-
fAE generate images that are not consistent with the causal
model upon intervention. For example, in MorphoMNIST,
intensity does not change after intervening on thickness. For
CausalDiffAE, intervening on a causal factor changes causal
variables downstream and intervening on a child node keeps
the parents unchanged, as shown in Figures 2a and 2b.

4. Conclusion

In this work, we propose causal diffusion autoencoders, a
diffusion-based causal representation learning framework
for counterfactual generation. We propose a causal encoding
and learn causal mechanisms among variables via neural net-
works. We formulate a variational learning objective to learn
disentangled causal representations, which we use to condi-
tion the reverse diffusion process. To enable the generation
of counterfactuals, we propose a DDIM-based counterfac-
tual generation algorithm subject to do-interventions. Ex-
periments show that diffusion models are a promising class
of generative models for high-quality controllable counter-
factual generation. Future work includes exploring reduced
supervision scenarios and text-controlled counterfactual gen-
eration.
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Appendices

A. Background
A.1. Structural Causal Model

A structural causal model (SCM) [14] is formally defined by a triple M = ⟨Z,U, F ⟩, where Z is the set of n endogenous
variables, U is a set of n exogenous independent noise variables, and F is a collection of n structural equations of the form:

zj := fj(paj , uj), j = 1, . . . , n (12)

where paj are called parents or direct causes of zj and the exogenous noise uj ensures to represent a general conditional
distribution P (zj |paj). An SCM where the exogenous noise variables are jointly independent (no hidden confounders)
is known as a Markovian model, which is the setting we assume for the purposes of this work. In this work, we assume
the additive noise model, zj := fj(paj) + uj for j = 1, . . . , n, where fj is a deterministic function and uj’s are mutually
independent noise variables with strictly positive densities. A (hard) intervention on a causal variable zj is facilitated by the
do(·) operator, which fixes the value of the variable to some constant c (i.e., do(zj = c)).

A.2. Diffusion Probabilistic Models

Diffusion Probabilistic Models (DPMs) [7, 11] have shown impressive results in image generation tasks, even beating out
GANs in many cases [3]. The idea of the diffusion model is to define a Markov chain of diffusion steps to slowly destroy the
structure in a data distribution through a forward diffusion process by adding noise [7] and learn a reverse diffusion process
that restores the structure of the data. Some proposed methods, such as DDIM [23], break the Markov assumption to speed up
the sampling in the diffusion process by carrying out a deterministic encoding of the noise.

Forward Diffusion. Given some input data sampled from a distribution x0 ∼ q(x), the forward diffusion process is
defined by adding small amounts of Gaussian noise to the sample in T steps thereby producing noisy samples x1, . . . ,xT .
The distribution of the noisy sample at time step t is defined as a conditional distribution as follows:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (13)

where βt ∈ (0, 1) is a variance parameter that controls the step size of noise. As t → ∞, the input sample x0 loses its
distinguishable features. In the end, when t = T , xT follows an isotropic Gaussian. From Eq (13), we can then define a
closed-form tractable posterior over all time steps factorized as follows:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (14)

Now, xt can be sampled at any arbitrary time step t using the reparameterization trick. Let αt = 1− βt and ᾱt =
∏t

i=1 αi:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (15)

Reverse Diffusion. In the reverse process, to sample from q(xt−1|xt), the goal is to recreate the true sample x0 from a
Gaussian noise input xT ∼ N (0, I). Unlike the forward diffusion, q(xt−1|xt) is not analytically tractable and thus requires
learning a model pθ to approximate the conditional distributions as follows:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

(16)

where µ and Σ are learned via neural networks. It turns out that conditioning on the input x0 yields a tractable reverse
conditional probability

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI) (17)

The overall learning objective of diffusion probabilistic models is to maximize the following variational lower bound

log q(x0) ≥ Eq(x0)[log pθ(x0|x1)

−
T∑

t=2

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))

−DKL(q(xT |x0)||q(xt))]

(18)



Equivalently, for Gaussian diffusion, we can simplify this objective via reparameterization and minimize the following mean
squared error loss

Lsimple = Et,x0,ϵ

[
∥ϵt − ϵθ(xt, t)∥22

]
(19)

where ϵt is the noise that takes an analytical form via a reparameterization from x0, as shown in [7].

B. Derivation of ELBO
Given a high-dimensional input image x0, an auxiliary weak supervision signal y, a latent noise encoding u, latent represen-
tation zcausal, and a sequence of T latent representations x1:T learned by the diffusion model, the CausalDiffAE generative
process can be factorized as follows:

p(x0:T ,u, zcausal|y) = pθ(x0:T |u, zcausal)p(u, zcausal|y) (20)

where θ are the parameters of the reverse process of the conditional diffusion model. The log-likelihood of the input data
distribution can be obtained as follows:

log p(x0,y) = log

∫
p(x0:T ,u, zcausal,y) dx1:T du dzcausal (21)

The joint posterior distribution p(x1:T ,u, zcausal|x0,y) is intractable, so we approximate it using a variational distribution
q(x1:T ,u, zcausal|x0,y) which can be factorized into the following conditional distributions

q(x1:T ,u, zcausal|x0,y) = qϕ(zcausal,u|x0,y)q(x1:T |u, zcausal,x0) (22)

where ϕ are the parameters of the variational encoder network. Since the likelihood of the data is intractable, we can
approximate it by maximizing the following evidence lower bound (ELBO):

log p(x0,y) ≥ Eq(x1:T ,u,zcausal|x0,y)

[
log

p(x0:T ,u, zcausal,y)

q(x1:T ,u, zcausal|x0,y)

]
(23)

= Eq(x1:T ,u,zcausal|x0,y)

[
log

p(u)p(zcausal|y)pθ(x0:T |u, zcausal)

qϕ(zcausal,u|x0,y)q(x1:T |u, zcausal,x0)

]
(24)

= Eq(x1:T ,u,zcausal|x0,y)

[
log

p(u, zcausal|y)
qϕ(zcausal,u|x0,y)

+ log
pθ(x0:T |u, zcausal)

q(x1:T |u, zcausal,x0)

]
(25)

= Eq(u,zcausal|x0,y)

[
log

p(u, zcausal|y)
qϕ(zcausal,u|x0,y)

]
+ Eq(x1:T ,u,zcausal|x0)

[
log

pθ(x0:T |u, zcausal)

q(x1:T |u, zcausal,x0)

]
(26)

= Eq(u,zcausal|x0,y)

[
Eq(x1:T ,u,zcausal|x0)

[
pθ(x0:T |u, zcausal)

q(x1:T |u, zcausal,x0)

]
︸ ︷︷ ︸

Representation-conditioned DDPM Loss

]
−DKL(qϕ(u, zcausal|x0,y)∥p(u, zcausal|y))︸ ︷︷ ︸

Joint Latent Posterior Loss

(27)

(28)

In the learning process, we minimize the negative of the derived ELBO. We simplify this objective by using the ϵθ
parameterization to optimize the representation-conditioned DDPM loss. Further, since u and zcausal are one-to-one mapped,
we can split the joint conditional distribution into separate conditional distributions. Thus, we have the following final objective
for CausalDiffAE:

LCausalDiffAE =

T∑
t=1

Et,x0,ϵ

[
∥ϵθ(xt, t, zcausal)− ϵt∥22

]
+ γ

{
DKL(qϕ(zcausal|x0,y)∥p(zcausal|y)) +DKL(qϕ(u|x0)∥N (0, I))

}
(29)



C. Connection to Score-based Generative Models
Diffusion models can also be represented as stochastic differential equations (SDEs) [24] to model continuous-time pertur-
bations. Specifically, the forward diffusion process can be modeled as the solution to an SDE on a continuous-time domain
t ∈ [0, T ] with stochastic trajectories:

dx = f(x, t) dt+ g(t) dw (30)

where w is the standard Weiner process, f is a vector-valued function known as the drift coefficient of x(t) and g is a scalar
function known as the diffusion coefficient of x(t). The drift and diffusion coefficients can be considered as the mean and
variance of the noise perturbations in the diffusion process, respectively. The reverse diffusion process can be modeled by the
solution to the reverse-time SDE of Eq. (30), which can be derived analytically as:

dx = [f(x, t)− g2(t)∇x log pt(x)] dt+ g(t) dw̄ (31)

where w̄ is the standard Weiner process in reverse time and ∇x log pt(x) is the score of the data distribution at timestep t.
Once we know the score of the marginal distribution for all timesteps t, we can derive the reverse diffusion process from Eq.
(31).

Song et al [24] showed that the denoising diffusion probabilistic model (DDPM) is a discretization of the following Variance
Preserving SDE (VP-SDE)

dx =
1

2
β(t)x dt+

√
β(t) dw (32)

Thus, learning a noise prediction network ϵθ and minimizing MSE in diffusion probabilistic models is equivalent to approxi-
mating the score of the data distribution in the SDE formulation. From a score-based perspective, we aim to minimize the
following conditional denoising score-matching form of our objective

Ep(x)Eqϕ(zcausal|x0,y)Eq(xt|x0)

[
log p(u) + p(zcausal|y)

− log qϕ(u|x0)− log qϕ(zcausal|x0,y)

+ λ(t)∥sθ(xt, zcausal, t)−∇xt log p(xt|x0)∥
] (33)

where sθ approximates the score of the data distribution conditioned on x0 and λ(t) is a positive weighing function. The ideal
for modeling natural phenomena in the world is by using differential equations to model the physical mechanisms [21]. In
the SDE formulation, the causal variables are used to denoise the high-dimensional data, which is modeled as a reverse-time
stochastic trajectory. We can interpret this idea as modeling the dynamics of high-dimensional systems by incorporating causal
information. As opposed to simply learning an arbitrary latent representation, a disentangled causal representation encodes the
causal information that the denoising process can use to reconstruct causally relevant features in high-dimensional data.

D. Experiment Details
D.1. Dataset Details

MorphoMNIST. The MorphoMNIST dataset [2] is produced by applying morphological transformations on the original
MNIST handwritten digit dataset. The digits can be described by measurable shape attributes such as stroke thickness,
stroke length, width, height, and slant of digit. Pawlowski et al [13] impose a 3-variable SCM to generate the morphological
transformations, where stroke thickness is a cause of the brightness of each digit. That is, thicker digits are often brighter,
whereas thinner digits are dimmer. The data-generating process is as follows

t =fT (uT ) = 0.5 + uT , uT ∼ Γ(10, 5) ,

i =fI(uI ; t) = 191 · σ(0.5 · uI + 2 · t− 5) + 64 , uI ∼ N (0, 1) ,

x =fX(uX ; i, t) = SetIntensity(SetThickness(uX ; t) ; i) , uX ∼ MNIST ,

(34)

where x is the resulting image, u is the exogenous noise for each variable, and σ(·) is the logistic sigmoid.
Pendulum. The Pendulum dataset [25] consists of a set of 7K images with resolution 96 × 96 × 4 describing a physical
system of a pendulum and light source that cause the length and position of a shadow. The causal variables of interest are the
angle of the pendulum, the position of the light source, the length of the shadow, and the position of the shadow. The data
generating process is as follows:



y1 ∼ U(−45, 45); θ = y1 ∗
π

200
; x = 10 + 9.5 sin θ

y2 ∼ U(60, 145); ϕ = y2 ∗
π

200
; y = 10− 9.5 cos θ

y3 = max(3,
∣∣∣9.5 cos θ

tanϕ
+ 9.5 sin θ

∣∣∣)
y4 =

−11 + 4.75 cos θ

tanϕ
+ (10 + 4.75 sin θ)

D.2. Additional Experiments

Figure 3. CausalDiffAE generated counterfactuals (MorphoMNIST)

Figure 4. latent traversals in the normalized range (−1, 1) generated counterfactuals (Pendulum)



Table 2. Implementation details of CausalDiffAE

Parameter MorphoMNIST Pendulum

Batch size 768 128
Base channels 128 128
Channel multipliers [1, 2, 2] [1, 2, 4, 8]
Training set 60K 5K
Image resolution 28× 28× 1 96× 96× 4
Num causal variables 2 4
zcausal size 512 512
β scheduler Linear Linear
Learning rate 10−4 10−4

Optimizer Adam Adam
Diffusion steps 1000 1000
Iterations 10K 50K
Diffusion loss MSE MSE
Sampling DDIM DDIM
Bottleneck γ 1.0 0.1

D.3. Implementation Details

We use the same network architectures used in other works based on diffusion models [3, 7, 11]. We set the causal latent
variable size to 512 to ensure a large enough capacity to capture causally relevant information. The representation-conditioned
noise predictor is parameterized by a UNet with the attention mechanism. Similar to [7], we use a linear noise scheduling for
the variance parameter β between β1 = 10−4 and β2 = 0.02 during training. We also use different bottleneck parameters γ
for each dataset. Note that we start at γ = 0 and linearly increase γ throughout training.

D.4. Baselines

CausalVAE. [25] proposed CausalVAE, a framework for causal representation learning from weak label supervision. Causal-
VAE assumes the underlying factors of variation are related by a linear structural causal model and utilizes a causal masking
layer to transform noise encodings into causal variables. The latent space is structured by a label prior that regularizes the
posterior and ensures the identifiability of the representation according to [8].
Class-conditional Diffusion Model (CCDM). The class-conditional diffusion model [3] is a simple conditional generative
model that conditions the reverse diffusion on predefined class labels. Thus, one can generate images conditioned on specified
discrete or continuous labels.
Diffusion Autoencoder (DiffAE). [15] proposed diffusion autoencoders (DiffAE), a representation learning objective in
diffusion models to learn manipulable and semantically meaningful latent codes. DiffAE learns a compact semantic subcode
that is then used in the reverse diffusion process for image decoding. However, this approach learns an arbitrary representation
in an unsupervised fashion and does not disentangle the latent space. Manipulations are performed using a post-hoc classifier
for linear interpolation. Thus, the learned representation would not be ideal to perform causal interventions. For a fair
comparison, we modify the objective to disentangle the latent space by incorporating label information in a prior to regularize
the posterior. We call this extension DisentangledDiffAE.
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