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Abstract

The emergence of various adapters [1–5], including
Low-Rank Adaptation (LoRA) applied from the field of nat-
ural language processing, has allowed diffusion models [6]
to personalize image generation at a low cost. However,
due to the various challenges including limited datasets
and shortage of regularization and computation resources,
adapter training often results in unsatisfactory outcomes,
leading to the corruption of the backbone model’s prior
knowledge. One of the well known phenomena is the loss
of diversity in object generation, especially within the same
class which leads to generating almost identical objects
with minor variations. This poses challenges in gener-
ation capabilities. To solve this issue, we present Con-
trastive Adapter Training (CAT), a simple yet effective strat-
egy to enhance adapter training through the application of
CAT loss. Our approach facilitates the preservation of the
base model’s original knowledge when the model initiates
adapters. Furthermore, we introduce Knowledge Preserva-
tion Score (KPS) to evaluate CAT’s ability to keep the for-
mer information. We qualitatively and quantitatively com-
pare CAT’s improvement. Finally, we mention the possi-
bility of CAT in the aspects of multi-concept adapter and
optimization.

1. Introduction

The advent of diffusion models like Stable Diffusion
[7–9] has advanced the text-to-image generation field, meet-
ing the growing demand for personalized image genera-
tion. This demand is driven by the integration of text-to-
image technology in various production contexts, including
comics, illustrations, and animations. Additionally, accu-
rate personalization has spurred the application of diffusion
models in other research areas, such as medical image data
synthesis and augmentation [10, 11], and 3D model gen-
eration [12–14]. Despite these progresses, the complexity
of achieving successful personalization poses considerable
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Figure 1. Comparison between Baseline [18] and Ours. We
used the following prompts elephants, a colorful teapot, and a
thin bird. Baseline (left) displays knowledge shift and lacking
diversity. CAT (right) does not display any knowledge shift and
preserves models’ ability in diverse manner.

challenges [15–17], primarily due to stringent data require-
ments and inherently unstable nature of adapters.

To lower the burden of dataset requirements and avoid
fickle results, various researches utilizing limited datasets
have been conducted [18–21]. Still, the following problems
remain unsolved: underfitting and catastrophic forgetting
due to overfitting. These problems cause the degradation of
generation quality along with unsuccessful identity genera-
tion.

We propose a new training pipeline called Contrastive
Adapter Training that efficiently tackles the aforementioned
problems. We adopt a novel form of optimization func-
tion that does not require any data augmentation compared
to former methods [19, 20]. CAT allows the model to fo-
cus contrastively on maintaining the original model’s base
knowledge by calculating the difference of noise prediction
between the original model and adapter without any token
conditioning. Lastly, we apply minor modifications to the
former metrics and introduce a new metric to measure quan-
titatively the magnitude of identity generation with knowl-
edge preservation.
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Figure 2. The Basic Pipeline of CAT. The CAT loss between the frozen U-net [22] and unconditioned adapter activation is calculated
while training the adapter. The Adapters such as LoRA in the attention layers of U-net is depicted as orange boxes. All the figures share
the same parameters unless specified.

The contributions concerning the proposed approaches
are as follows.

• We develop a new pipeline that mitigates the underfit-
ting and knowledge corruption problem in consistent
generation adaptations.

• We propose a simplified new metric that assesses the
knowledge preservation degree of text-to-image gener-
ation adaptations.

• With the proposed pipeline and metric, we qualita-
tively and quantitatively show the effectiveness of our
proposed methodology.

We also anticipate varied improvements regarding the
application and structure of CAT. We mention this part in
Section 5.

2. Method

2.1. Preliminary

Latent Diffusion Models [6] are probabilistic architec-
tures that model intractable density functions by sending
images to latent spaces. For a certain number, n, of steps, T ,
the model passes the latent forward through adding or ex-
tracting some noise from Gaussian normal distribution. We
also describe this process in the introduction of our method
(Fig 2). During the train, the model gains the ability to pre-
dict how much noise to extract which is the equivalent of

modeling the density function. Researches improved the
architecture by applying deep learning structures includ-
ing the implementation of attention architecture [23]. This
not only has increased the capacity of the model [8], but
also enabled text-to-image guidance utilizing CLIP embed-
ding [24]. The mathematical model often denotes the text
prompts as y, the text encoder as τ

θ
, and the original LDM

loss function as

L
LDM

:= Eϵ(x),y,ϵ∼N (0,1),t[||ϵ− ϵ
θ
(zt, t, τθ

(y))||22] (1)

where ϵ is the additive Gaussian noise.
Diffusion Adapters have rapidly developed in text-to-

image generation. Diffusion models have been a signifi-
cant breakthrough in high quality image generation, yet the
realm of generation control is still a field of active research.
Many refers to one of the major approaches to enable the
control as personalization. It is the capability of generating
a consistent identity with variety, and to achieve it, adapters
are deemed as reasonable solutions.

One of the well received personalization method is
Dreambooth [19]. The method gains control over consis-
tency using rare-token identifier. It creates a dataset of con-
sistent identity and finetunes the backbone model, mostly
diffusion models. The identity images are paired with a
rare token: a combination of special, meaningless letters.
From this, we denote the initialization of the adapter with
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Figure 3. Results of text-to-image generation with prompts: a round bird staring to the right with its beak closed. LoRA fails to preserve
original knowledge and limits its generation to target image. CAT achieves high fidelity identity generation, while retaining the original
knowledge in token-less generation.
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which represents prompts with rare tokens added in text
guidance. To prevent the mode collapse phenomenon [25],
or just simply to keep the general capability of the model,
it utilizes the self-generated image set of the identity class,
called regularization set, and constructs a novel preserva-
tion loss function.

The idea of linear layer Low-Rank Adaptation [18] has
been successfully adapted to text-to-image model’s atten-
tion layers. It reduced the cost of finetuning in computa-
tional aspect, allowing customer-level devices to deal with
large language models such as LLAMA and GPT series.
[26–28]. Especially in text-to-image models, LoRA has al-
lowed personalization by decomposing mainly U-net [22]
attention layers during the identity injection steps. LoRA
has progressively overwhelmed Dreambooth by reducing
the cost of train which solved the underfitting problem,
common with Dreambooth training.

Basic decomposition of attention layers of diffusion
model is defined such like

θn×n = θn×r × θr×n (2)

However, LoRA does not explicitly state or restrict any
form of regularization, and small sizes of datasets invoke
catastrophic forgetting and cause model’s knowledge shift.

Textual Inversion [21] took a whole new approach in per-
sonalization. The method does not attempt to update the
weight of the original model. Rather, it tries to find the em-
bedding in the text embedding space, such as BERT’s hot
vector space [29]. This train targets to generate the identity
when the embedding is added to the prompt.

The Chosen One [20] utilizes both LoRA and Textual
Inversion with K-MEANS++ [30] to enhance the targeted

identity. It generates a certain number of images like
Dreambooth and adopts the machine learning method to
cluster identities from the images and augment the intended
personalization.

Textual Inversion and The Chosen One introduce unique
ways for personalization, but the first still retains the issue
of underfitting when the latter tends to overfit the other clus-
tered identity to the intended one when the dataset is lim-
ited. Given these complications, we propose a method that
sustains the general capacity with better initialization by im-
plementing Contrastive Adapter Training loss.

2.2. Contrastive Adapter Training

Following the tradition of Parameter-Efficient Fine-
Tuning (PEFT) [31], all weights are frozen except the target
adapter weights. Here, we use LoRA from PEFT as min-
imal baseline. We adopt Mean Squared Error loss for U-
Net’s noise prediction between original model and adapted
model and accumulate the loss to the original training loss
(Fig 2). With this approach, CAT minimizes the corrup-
tion of the original knowledge and unwanted impact of the
adaptation.

Using the rank decomposition notation (2) as a part of an
adapter initialization, we denote CAT loss function as

L
CAT

:=

Eϵ(x), y, yT
, ϵ∼N (0,1), t[||ϵ− ϵ

θ
(zt, t, τθL,θR

(y
T
))||22

+ α ∗ ||ϵ
θ
(zt, t, τθ (y))− ϵ

θ
(zt, t, τθL

,θR
(y))||22]

(3)

while the constant α determines the strength of CAT.



3. Evaluation
We have conducted the evaluation regarding CAT mainly

by comparing three metrics that uphold our assertion: iden-
tity similarity, prompt similarity, and knowledge preserva-
tion score. Various studies [19,21,32] already have accepted
the first two, including TCO [20].

We have combined and modified the former metrics to
make them more suitable to measure the quality of the pro-
posed method. We named this new metric, Knowledge
Preservation Score (KPS). Also, we added some adjust-
ments in them when we aggregate the result to avoid outlier
impacts. For notations, see A.1.

Prompt Similarity evaluates the objective quality of the
image. The prompt and generated image without a token
are embedded with CLIP encoder, θclip, and similarity is
calculated without normalization. Let the index of the im-
age and caption pair be denoted as i, and let P denote the
caption part of the pair and IyT denote the image generated
by adapter applied. Then, each pair’s score stands for

sprompt
i = SC(θclip(Pi), θclip(I

y
T

i )) (4)

With this, use harmonic mean to average the score of the
whole inference.

prompt score = H(sprompt
1 , sprompt

2 , . . . , sprompt
i ) (5)

Identity Similarity compares the token generated image
from the adapters with the original identity image. The orig-
inal image is captioned along with a trigger token to note the
identity, and the generated image is guided by this equiva-
lent caption. Two images then are embedded by the CLIP
encoder, and cosine similarity is calculated with normaliza-
tion. Let the score of each pair of images denoted as

sidi = SC(θclip(I
original
i ), θclip(I

y
T

i )) (6)

Again, for the final score, apply harmonic mean like above.

identity score = H(sid1 , sid2 , . . . , sidi ) (7)

Finally, to evaluate the degree of knowledge preser-
vation, we implement Knowledge Preservation Score that
compares the images generated by y and y

T
. Denoted the

following,
sprevi = SC(θclip(I

y
i ), θclip(I

y
T

i )) (8)

And since sprevi is normalized within [0,1] and due to the
usage of harmonic mean, we can subtract the total aggrega-
tion from 1. Adapters that lost the prior knowledge gener-
ate similar images whether the prompt has a trigger token or
not as shown in Figure 3. Thus, the score will show that the
increase in similarity points out overfitting and knowledge
loss from the adapters.

knowledge preservation score =

1−H(sprev1 , sprev2 , . . . , sprevi ) (9)

We applied this metric to adapters trained in as unbiased
environment as possible. We listed the results in Table 1.
For details about the trains and settings, see A.2.

Method PS(5) IS(7) KPS(9)

LoRA [18] 0.2894 0.9056 0.0808
Dreambooth [19] 0.2964 0.8394 0.0883
Textual Inversion [21] 0.3054 0.8405 0.0973
TCO [20] 0.2406 0.8416 0.0907
CAT(Ours) 0.2938 0.8968 0.1231

Table 1. Comparison between common adapters. The prompt
score and identity score do not show any drastic gap, however,
CAT overwhelms other adaptations in knowledge preservation
score.

4. Conclusion
We accomplish the following two primary objectives.

Firstly, we propose Contrastive Adapter Training (Fig 2
and Eq 3), an on-the-fly regularization technique that ef-
fectively transforms knowledge shift into knowledge injec-
tion. Secondly, we introduce the Knowledge Preservation
Score (KPS) as a means to assess the controllability of to-
ken generation by utilizing the harmonic mean of similar-
ity scores from trained concepts. Our experiments demon-
strate that CAT surpasses competing methods in preserving
knowledge, thereby enabling precise control over concept
generation. This model notably prioritizes token-specific
conditions, avoiding the common pitfall of class-wise mode
collapse.

5. Limitation and Future Works
We note that we have not included CLIP score-based di-

versity and fidelity calculation due to its instability [33–35].
Additionally, we have yet to examine the impact of dis-
crepancies between the model’s domain knowledge and the
training domain with no thorough investigation on CAT
structure and application. In future work, we aim to estab-
lish a reliable benchmark for consistent character generation
based on our current Knowledge Preservation Score (9).
Also, we intend to inspect the impact of CAT (Fig 7) and
optimizing its structure (Fig 5) more carefully. Both tasks
will require various examinations such as Figure 8. Mainly,
we plan to enhance CAT to support multi-concept training,
incorporating per-token loss for individual items demon-
strated in Section A.3. This expansion holds promise for
achieving significant advancements in multi-concept gener-
ation [36–38] and enhancing the efficiency of personaliza-
tion strategies.
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Appendix

with token with token with token with token with token

no token no token no token no token no token

DB [19] TI [21] TCO [20] LoRA [18] CAT(Ours)

original

with token with token with token with token with token

no token no token no token no token no token

DB [19] TI [21] TCO [20] LoRA [18] CAT(Ours)

original

with token with token with token with token with token

no token no token no token no token no token

DB [19] TI [21] TCO [20] LoRA [18] CAT(Ours)

original

Figure 4. Qualitative results of various adapter training. We used ETH-80 dataset [39] for training and validation. The prompts used
for generation are a green sports car, a cow in a city, and a dog in a city.



A. Background
A.1. Mathematical Notations

We denoted cosine similarity used in equation 4, 6, and 8 as

SC(A,B) =
A ·B

∥A∥2 ∥B∥2
(10)

For harmonic mean noted in 5, 7, and 9,

H(x1, x2, . . . , xn) =
n∑n

i=1

1

xi

(11)

A.2. Train Settings

For Figures 1, 3, 5 and Table 1, we utilized Textual Inversion dataset to validate our training. Each dataset was composed
of 5-6 images. For the table, we trained total 9 adapters for each type and generated 10-11 images for each adapter to
evaluate the metrics. For Figure 4, we collected 6 images from each ETH-80 dataset for the experiment. For these inferences,
we trained all adapters with equal 600 steps with mentioned datasets except the regularization sets which were an essential
part of some adapter’s algorithm. For Figure 7, we only used a single dataset of red teapot among the datasets above and
trained 4 adapters with different CAT variables, α, and 1000 steps. We applied uniform learning rate of 1e-4 for U-Net
LoRA, Dreambooth and Textual Inversion. We applied AdamW optimizer [40] with weight decay λ=0.01 and betas β=(0.9,
0.999), epsilon ϵ=1e-08, utilizing max 18GB of VRAM in average, as described in Figure 5 with detailed training time. For
hardware, we used 2 GeForce RTX 4090 gpus for all training.

(a) Resource usage in train (b) Resource usage in inference

Figure 5. Video memory and time consumption of various adapters in train and inference. The red dots show our method’s perfor-
mance. TCO [20] uses Stable Diffusion XL model [41] requiring a larger VRAM consumption. We included the preparation time for
regularization set with Dreambooth [19] and TCO in the total training time. We plan to conduct further optimizations to decrease memory
consumption on the same level as LoRA [18].

A.3. Multi-Concept Training

For Figure 6, we selected 44 images from Textual Inversion to compose a single dataset. We trained only one LoRA based
CAT adapter with total 32,000 steps and the same setting from Section A.2. The experiment is to elucidate multi-concept
training capability. This showed the result of a successful training trend of custom concepts in a single adapter, suggesting a
large scale knowledge injection capability. For simplicity, we fixed all trigger tokens as first phrase, letting them be replaced
dynamically.
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Figure 6. Single Adapter Multi-Concept training samples. The result shows the capability of learning multiple concepts as desired
special tokens in single adapter.



Figure 7. The qualitative result of CAT factor experiment using LoRA [18]. When the CAT factor is low, the original class generation
tends to be off-grade, which is known as hyperspherical energy diverge [42]. On the other hand, with proper tuning of CAT factor, the
adapter generates the original class with better quality, also the injection of the original knowledge accelerates.



(a) Prompt Score(5) Graph regarding the experiment in Figure 7 (b) KPS(9) Graph regarding the experiment in Figure 7

Figure 8. Metric Graph on CAT variable test. We used the metrics mentioned in Section 3 to evaluate the experiment in Figure 7. As
stated in the experiment, prompt score shows the higher capability of original knowledge generation. Also, KPS is always higher than the
baseline LoRA as long as we apply CAT despite the variable’s magnitude.
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