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Figure 1. Conceptual depiction of the relationship between accu-
racy of robustly trained models with proximity to counterfactual
examples (CEs). Stronger adversarial training inevitably leads
to misclassification of some clean training data, incurring down-
stream test performance loss. We hypothesize that adversarially
trained models are forced to become invariant to some semantic
features due to the nearby presence of true CEs.

Abstract

We leverage diffusion models to study the robustness-
performance tradeoff of robust classifiers. Our approach
introduces a simple, pretrained diffusion method to gener-
ate low-norm counterfactual examples (CEs): semantically
altered data which results in different true class member-
ship. We report that the confidence and accuracy of robust
models on their clean training data are associated with the
proximity of the data to their CEs. Moreover, robust mod-
els perform very poorly when evaluated on the CEs directly,
as they become increasingly invariant to the low-norm, se-
mantic changes brought by CEs. The results indicate a sig-
nificant overlap between non-robust and semantic features,
countering the common assumption that non-robust features
are not interpretable.

1. Introduction

Leading theory by Ilyas et al. [10] asserts that adversar-
ial vulnerability arises from reliance of DNN classifiers on
non-robust features: well-generalizing, yet brittle features
which are not comprehensible to humans. As robust models
must become invariant to this subset of predictive features,
they inevitably lose performance [20]. However, humans
appear to break this trend by simultaneously maintaining
good performance and robustness on adversarial data [16].

The existence of adversarial perturbations reflects the
stark differences between the perception of DNNs and our
own. DNNs are notoriously uninterpretable [17, 23], and
there is a need for interpretable decision-making in high-
stakes scenarios. One model-agnostic way to interpret clas-
sifier decision-making is to generate counterfactual exam-
ples (CEs): subtle, semantic changes to an input datum
which would result in a classifier predicting a target class
[21]. Following their definition from psychology, CEs for
an image-label pair (x, y) can be described by the statement
“if y′ were the true class of image x (instead of y), then x
would look like x′.” While CEs can help users understand
the decision-making of DNN classifiers, practical methods
to generate CEs are problematically similar to those for ad-
versarial attacks [5, 15]. Hence, methods to generate CEs
for DNNs often require robust models in some form [1, 2].

We develop new understanding of the robustness-
performance tradeoff through our study of the semantic fea-
ture distributions learned by robust classifiers. Our study
leverages independently generated CE datasets which we
create with a simple, pretrained diffusion model technique.
We report that robust models, unlike standard (non-robust)
models, are more likely to lose confidence on and misclas-
sify clean training data which have nearby CEs, and robust
models become invariant to the semantic changes brought
by CEs. Contrary to common assumptions, our findings
suggest significant overlap between non-robust and seman-
tically meaningful features. This conflict speaks to the com-
plexity of the adversarial problem and motivates alternative
approaches to robustness which can resolve or avert it.
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2. Background
Adversarial Examples and Adversarial Training Ad-
versarial examples are minute, malicious data perturba-
tions which alter classifier predictions [19]. For a classifier
fθ : X → Y where X ∈ Rn and Y is the space of categor-
ical distributions of support cardinality k, ỹ-targeted adver-
sarial examples x̃ are often computed by altering an input x
to descend the negative log loss [6] L : Θ×X ×Y → R+:

x̃ = argmin
x′∈Bε(x)

L(θ, x′, ỹ), (1)

where the neighborhood Bε(x) is commonly defined with
the L∞ or L2 norm. In this work, we focus on L2 adver-
sarial examples. Adversarial training consists of finding the
optimal model parameters θ∗ for the robust objective [12]:

θ∗ = argmin
θ

Ex,y max
x′∈Bε(x)

L(θ, x′, y). (2)

There are other robustness methods such as gradient regu-
larization [4, 25] and randomized smoothing [3], but adver-
sarial training is the most well-known and successful.

Diffusion Models and Classifier-free Guidance Diffu-
sion models learn a sequence of functions ϵθ(xt, t) which
predict the noise added to data by a diffusion process at time
t ∈ [0, 1] [9]. To generate new data, ϵθ(xt, t) is used to it-
eratively denoise samples xt initially drawn from a known
noise prior. The noise prediction function ϵθ(xt, t) is known
to approximate the negative score at diffusion step t [18, 24]
(i.e., ϵθ(xt, t) ≈ −σt∇x log pt(xt)). For class-conditional
diffusion models, this property can be used to reproduce the
effect of adding targeted classifier gradients [8]:

ϵwθ (xt, y, t) := (w + 1)ϵθ(xt, y, t)− wϵθ(xt, t)

≈ ϵθ(xt, y, t) + wσt∇xL(θt, xt, y), (3)

where θt are the equivalent parameters for a time-
conditional classifier. Coined “classifier-free guidance”
with weight w, sampling with ϵwθ (xt, y, t) as the noise pre-
diction function generates high-quality, conditional data.

3. Methodology
CE Dataset Generation Our approach to CE generation
for datum x is to recast it as sampling from a sequence of
un-normalized distributions defined by the product of the
data distribution (represented by the class-conditional dif-
fusion model) with an independently diffused CE “neigh-
borhood” distribution of scale σCE centered on µCE = x.
The score of this distribution at each time t is the sum of
scores of the two components, so we may simply add the
diffused neighborhood score to the diffusion model score.

(a) CIFAR10 CE Dist. (L2) (b) CIFAR10 CE Dist. (L0)

(c) SVHN CE Dist. (L2) (d) SVHN CE Dist. (L0)

Figure 2. CE distribution comparison. Boltzmann variant CEs
produce lower-norm, sparser changes. Best viewed in color.

We present two variants of the noise prediction function
corresponding to different choices for the neighborhood dis-
tribution: Gaussian and Boltzmann-inspired (see appendix).

ϵGθ (xt, y, µCE , t) := ϵwθ (xt, y, t)−
αtµCE − xt

α2
tσ

2
CE + σ2

t

(4)

ϵBθ (xt, y, µCE , t) :=

ϵwθ (xt, y, t)−
√
2

αtσCE
hardtanh(γt (xt − αtµCE)) (5)

where αt is a (diffusion) time-dependent scalar decreasing
in t ∈ [0, 1], σt =

√
1− α2

t , and γt is a time-dependent
scalar derived from the first-order Maclaurin series of the
Boltzmann-inspired scores, and is defined as:

γt :=

√
2

αtσCE
−
√
2

σt
√
π

(
exp

(
σ2
t

α2
tσ

2
CE

)
erfc

(
σt

αtσCE

))−1

.

(6)
A CE xCE is generated for a datum x by assigning µCE ←
x and sampling with ϵGθ (·) or ϵBθ (·) with guidance towards
target class yCE . Guidance w and neighborhood scale σCE

are hyperparameters. The Boltzmann-inspired distribution
has a sharper mode than the Gaussian distribution, encour-
aging x− xCE to be lower norm (L2) and more sparse.

4. Experiments
We run experiments in the PyTorch framework [14] with
the CIFAR10 [11] and SVHN [13] image classification
benchmarks . We employ conditional score-based models
(SBMs) [18] for all diffusion models and L2 PGD(8) [12]
2×WideResNet-40 models [26] for all robust classifiers.



(a) CIFAR10 ε = 0
r2 = 0.02

(b) CIFAR10 ε = 1
r2 = 0.33

(c) CIFAR10 ε = 1.5
r2 = 0.39

(d) SVHN ε = 0
r2 = 0.01

(e) SVHN ε = 0.2
r2 = 0.01

(f) SVHN ε = 0.4
r2 = 0.24

Figure 3. Scatter plots of classifier confidence and average CE distance of 10000 clean training samples as adversarial training norm is
increased. Robust models are more likely to misclassify and lose confidence on data which have closer CEs. Best viewed in color.

CE Dataset Evaluation In each experiment we generate
2 CEs for each class for at least 1000 samples from the train-
ing set, resulting in at least 20000 CEs. We compare the two
CE generation variants with CEs generated by a robust clas-
sifier in Fig. 2. The Boltzmann variant (type B) produces
CEs with lower-norm (L2) and sparser (L0) changes than
the Gaussian variant does. The Boltzmann variant produces
CEs of norm less than or equal to the norm of CEs produced
by the robust classifier. Standard classifiers (no adversar-
ial training) achieve high accuracy on the CEs (i.e., they
predict yCE when provided xCE), indicating good seman-
tic quality. The remaining experiments use 200000 Boltz-
mann variant CEs generated from 10000 training samples
(CIFAR10 or SVHN) with w = 15 and σCE = 0.2. Please
see the appendix for more information.

Robust Model Evaluation Our experience is that perfor-
mance loss of robust models begins on the clean training
data, incurring performance loss on clean test data down-
stream. We plot the average L2 distance of clean training

samples with the confidence and accuracy of robust models
on the clean samples in Fig. 3. Standard models (ε = 0)
achieve very high clean training accuracy, as expected. As
robust training budget ε increases, robust models are more
likely to misclassify clean training data which are closer
to their CEs. Moreover, the confidence of robust models
on their training data becomes correlated with the proxim-
ity of the data to their CEs (r2 = 0.39 for CIFAR10 and
r2 = 0.24 for SVHN).

Fig. 4a and Fig. 4c depict the accuracy of robust models
on clean train data and on CEs generated from the train data.
Same-class CEs resemble the original data; hence their ro-
bust accuracy trends are similar. However, robust models
perform very poorly on different-class CEs. Fig. 4b and
Fig. 4d depict the probability that the original label y is pre-
dicted by a robust model for (xCE , yCE), given that the ro-
bust model was correct on (x, y). Robust models are much
more likely to misclassify CEs as having the source label,
indicating that they become invariant to the low-norm, se-
mantic changes brought by CEs.



(a) CIFAR10 Accuracy (b) CIFAR10 Prob. Source Predicted

(c) SVHN Accuracy (d) SVHN Prob. Source Predicted

Figure 4. Classifier performance on 10000 training data and 200000 CE data generated from the training samples. Best viewed in color.

Fig. 5 depicts the L2 distance distribution of Boltzmann-
type CEs generated from the original CIFAR10 training
data and Boltzmann-type CEs generated from robust CEs
(ε = 1, ε = 2). On average, Boltzmann-type CEs are
farther away from their source data samples when the data
samples are robust model CEs (compared to using the orig-
inal training data as the source data). Since robust model
CEs are generated by following input gradient to maximize
the confidence of a target class, this indicates that robust
model gradients orient towards data regions which are far-
ther away from CEs. Future work may investigate a link
between the perceptually aligned gradient of robust classi-
fiers [20] and the proximity of data to CEs.

The method presented in this work can be leveraged to
convert a conditional diffusion model into an interpretable
classifier. Using the diffusion CE method with a “class with
lowest average CE distance” decision rule achieves ∼ 85%
accuracy on 1000 input samples of the CIFAR10 test set.
Critically, input data for classification are never provided
directly to the diffusion model - the input data merely guides
CE sampling with analytic scores.

Limitations Our study considers one combination of
classifier architecture, diffusion model, and adversarial at-
tack. This study is limited to the L2 norm constraint and two
image classification benchmarks. Investigation with addi-
tional datasets, attacks, and models is left to future work.

5. Conclusion
We present a simple, classifier-free diffusion method to gen-
erate counterfactual examples (CEs) which enables novel

Figure 5. Distance of different-class CEs generated by the Boltz-
mann method (w = 15 σCE = 0.2) when the input data is the
original CIFAR10 train data, CEs generated by a robust ε = 1
model from the CIFAR10 train data, and CEs generated by a ro-
bust ε = 2 model from the CIFAR10 train data. Robust model
CEs tend to be in data regions farther away from our diffusion-
generated CEs. Best viewed in color.

investigation of the performance loss of robust classifiers.
Our results indicate a significant overlap between non-
robust and semantically meaningful features, countering the
common assumption that non-robust features are not inter-
pretable. Hence, robust models must become invariant to
this subset of semantic features along with non-semantic
adversarial perturbations. Our study motivates new ap-
proaches to robust training which can resolve this issue.
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(a) CIFAR10 Standard Accuracy (b) SVHN Standard Accuracy

Figure 6. Comparison of the accuracy attained by standard models
on the CEs. Best viewed in color.

6. Reproducibility Information

L2 distance for the CEs is defined as ∥x− xCE∥2, where x
is the original sample from which the CE xCE was gener-
ated. L0 distances (∥x − xCE∥0) employ an element-wise
threshold of 0.02 for each pixel difference value, and the
reported value is normalized (the thresholded L0 distance
is divided by the dimension of x). CE quality is measured
by the accuracy of a standard classifier in predicting yCE

given xCE (depicted in Fig. 6). On SVHN there appears to
be sizeable drop from robust CE accuracy to the Boltzmann
CEs. This may be due to several reasons. First, the ϵ = 0.4
robust classifier may be making adversarial changes (rather
than semantic), biasing its quality measure higher at that
L2 distance. Second, diffusion models tend to ignore class
conditioning information when their inputs are simple (like
those of SVHN), and they operate instead as unconditional
denoising functions. This would cause the CE generation
method to fail. Visual inspection of the CEs for SVHN in-
dicates that the ε = 0.4 classifier is making some adversar-
ial (non-semantic) changes, and the diffusion method fails
in some cases. Please refer to the end of the supplementary
material for visual depictions of CEs.

Robust WideResNet Experiments

2×WideResNet-40 models [26] are adversarially trained
with PGD(8) [12] in L2 on CIFAR10 [11] and SVHN [13]
for 100 epochs and learning rate 1e − 3 using the Adam
optimizer β = (0.9, 0.999). For standard models (ε = 0),
dropout with rate 0.3 is used. The data augmentations for
CIFAR10 are random horizontal flips and random crops
with padding 4. No augmentations are used for SVHN. The
clean accuracies of the trained models are listed in tables
(1) and (2). All adversarial attacks are PGD(8).

We observed that robust training on SVHN would col-
lapse for ε ≥ 0.5, so only ε ≤ 0.4 experiments are re-
ported. Coincidentally, ε ∼ 0.5 is half the distance of a
large amount of different-class CEs to their original data on
SVHN. We hypothesize that the presence of many CEs at
the L2 distance 1 may be related to this training collapse
phenomenon, as an adversarial budget of ε ∼ 0.5 could
make the source class of perturbed training data highly am-
biguous.

Diffusion Models

In all experiments using diffusion models, we employ the
variance-preserving (VP) score-based models (SBM) of
Song et al. [18]. The SBM architecture follows a U-net
structure with four symmetric stages of two ResNet blocks
in each encoding or decoding stage. Downsampling (and
upsampling, respectively) occurs in the innermost three
stages (i.e., stages 2, 3, 4). 128 channels (features) are used,
and the number of features used is doubled to 256 for stages
2, 3, and 4. Attention is applied at the center of the U-net
and after the first downsampling stage and before the last
upsampling stage. The SBMs use the SiLU activation func-
tion [7] and GroupNorm [22] with a group size of 32. Train-
ing on CIFAR10 or SVHN occurs for 1 million iterations of
batch size 128 with a learning rate of 2e−4 and Adam opti-
mizer β = (0.9, 0.999). We use a learning rate warmup for
5000 iterations and gradient clipping with norm 1. Class
conditioning is provided as a learnable embedding which
is added to the time condition embedding. An additional
learnable null embedding signifies that no class information
is provided. During conditional SBM training, class condi-
tions are dropped and replaced with this null embedding at
a rate of 30%.

7. CE Generation Method

CEs were generated by sampling from a sequence of un-
normalized distributions represented by the product of the
data distribution (rep. by diffusion model) and an inde-
pendently diffused neighborhood distribution. The diffu-
sion model used is a variance-preserving (VP) score-based
model of Song et al. [18] and the sampling strategy for gen-
eration used an Euler-Maruyama predictor with 1000 dis-
crete steps.

Since the density at each step in the sequence is repre-
sented as the product of the diffused data distribution and
an independently diffused neighborhood distribution, sam-
pling amounts to adding the conditional diffusion score (and
classifier free guidance) with the analytic neighborhood dif-



Table 1. Accuracy of CIFAR10 Models on the CIFAR10 test set

ε CLEAN ACCURACY (%) PGD(8, 0.5) ACCURACY (%)

0 93.08 5.75
0.1 91.33 45.06
0.5 84.87 54.73
1.0 76.23 54.53
1.5 66.21 52.34
2.0 58.37 47.53

Table 2. Accuracy of SVHN Models on the SVHN test set

ε CLEAN ACCURACY (%) PGD(8, 0.2) ACCURACY (%)

0 96.75 77.46
0.1 95.63 86.42
0.2 95.41 86.84
0.4 93.09 85.43

fusion score. Sampling then proceeds as normal (see [18])
with the augmented score.

Robust Model CEs For CE generation with robust mod-
els, we push data in the direction of targeted gradients with
a step size of 0.05 until a targeted class confidence of 0.9 or
a maximum of 200 steps is reached. At each step, we clip
the pixels of the image to remain in [0, 1].

Boltzmann-Inspired Distribution

The density of the 1D Boltzmann-inspired distribution pro-
posed in this work is given by:

b(x) =
1√

2σCE

exp

(
−
√
2 |x− µCE |

σCE

)
, (7)

where µCE is its mean and σCE is its standard deviation.
Scaling samples of this distribution with αt > 0 amounts to
sampling from a new distribution with mean αtµCE and
standard deviation αtσCE . Defining yt = x − αtµCE ,
we convolve this distribution with a Gaussian distribution
of mean µ = 0 and scale σt to yield the (diffusion) time-
dependent distribution:

bt(x) =

exp
(

σ2
t
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tσ

2
CE
− yt√

2αtσCE
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σt
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2
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2
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(
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2
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. (8)

Taking the logarithm of bt(x) and differentiating with
respect to x, we have:
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Although this expression yields the exact scores for the
diffused Boltzmann-inspired distribution in 1D, it is numer-
ically unstable. We note that∇x log bt(x) is sigmoidal, and
we elect to approximate it using the hardtanh function. One
may consider the

√
2

αtσCE
expression to define the range of

the score values, and the remainder of the expression de-
fines a Gaussian-like score near the mean. Hence, we define
our approximate scores as:

∇x log bt(x) ≈
√
2

αtσCE
hardtanh(γt yt), (10)

where γt is the first term of a Maclaurin series estimate
of∇x log bt(x) and is given by:
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(11)

With u = σt

αtσCE
, the expression exp(−u2)

erfc(u) is numerically
unstable for large values of u. However, beyond a certain
point (e.g., u ≥ 20), the function behaves as a linear func-
tion with slope

√
π. We avoid the numerical instability by

switching to a linear approximation at u = 20.

The exact score function ∇x log bt(x) and its approxi-
mation is displayed with αt = 1 for various values of σt

and in figure 7. In our experiments, this 1D score function
is applied element-wise to vector inputs, providing a sparsi-
fying effect on CE generation.

For completeness, we include ∇2
x log bt(x), which was

evaluated at yt = 0 to yield the first term of the Maclaurin
series of∇x log bt(x):

Figure 7. Comparison of true 1D Boltzmann-inspired scores with
the proposed hardtanh approximation (black). The mean µCE is
selected to be 0. Best viewed in color.
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Figure 8. Boltzmann (w = 15 σCE = 0.2) CEs from the CIFAR10 training set. Leftmost column: original samples and class label. Other
columns: CE and L2 distance to the original sample.



Figure 9. Boltzmann (w = 15 σCE = 0.2) CEs from the CIFAR10 training set. Leftmost column: original samples and class label. Other
columns: CE and L2 distance to the original sample.



Figure 10. Robust model (ε = 1, confidence threshold 0.9) CEs from the CIFAR10 training set. Leftmost column: original samples and
class label. Other columns: CE and L2 distance to the original sample.



Figure 11. Robust model (ε = 1, confidence threshold 0.9) CEs from the CIFAR10 training set. Leftmost column: original samples and
class label. Other columns: CE and L2 distance to the original sample.



Figure 12. Boltzmann (w = 15 σCE = 0.2) CEs from the SVHN training set. Leftmost column: original samples and class label. Other
columns: CE and L2 distance to the original sample.



Figure 13. Boltzmann (w = 15 σCE = 0.2) CEs from the SVHN training set. Leftmost column: original samples and class label. Other
columns: CE and L2 distance to the original sample.



Figure 14. Robust model (ε = 0.4, confidence threshold 0.9) CEs from the SVHN training set. Leftmost column: original samples and
class label. Other columns: CE and L2 distance to the original sample.



Figure 15. Robust model (ε = 0.4, confidence threshold 0.9) CEs from the SVHN training set. Leftmost column: original samples and
class label. Other columns: CE and L2 distance to the original sample.
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