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Figure 1. OVDiff is an open-vocabulary segmentation method that, given an image and a free-form set of class names, can segment any
user-defined classes. It is fully automatic and does not require any further training.

Abstract

Open-vocabulary segmentation is the task of segmenting
anything that can be named in an image. Recently, large-
scale vision-language modelling has led to significant ad-
vances in open-vocabulary segmentation, but at the cost of
gargantuan and increasing training and annotation efforts.
Hence, we ask if it is possible to use existing foundation
models to synthesise on-demand efficient segmentation al-
gorithms for specific class sets, making them applicable
in an open-vocabulary setting without the need to collect
further data, annotations or perform training. To that end,
we present OVDiff, a novel method that leverages genera-
tive text-to-image diffusion models for unsupervised open-
vocabulary segmentation. OVDiff synthesises support image
sets for arbitrary textual categories, creating for each a set
of prototypes representative of both the category and its
surrounding context (background). It relies solely on pre-
trained components and outputs the synthesised segmenter
directly, without training.

1. Introduction

Open-vocabulary semantic segmentation is the task of seg-
menting images into regions matching several free-form

textual categories. As the field of Computer Vision moves to-
wards large-scale general-purpose models, open-vocabulary
“foundation” models have similarly emerged. Yet, the devel-
opment of ones suitable for dense localisation tasks such as
semantic segmentation incurs both enormous training costs
and requires expensive mask annotations. Instead, we show
that the open-vocabulary segmentation task can be effec-
tively tackled starting from a set of frozen foundation models,
without requiring additional data or even fine-tuning.

In order to do so, we introduce OVDiff, a method that
turns existing foundation models into a “factory” of image
segmenters, i.e., using foundation models to synthesise on-
demand a segmenter for any new concepts specified in natu-
ral language. Thus, OVDiff can be used for open-vocabulary
segmentation, where it achieves state-of-the-art results in
standard benchmarks. Moreover, once synthesised, the seg-
menters can be efficiently applied to any number of images
and easily extended to new categories.

Specifically, segmenting an image using OVDiff can be
done in three steps: generation, representation, and match-
ing. Given a textual prompt, OVDiff uses an off-the-shelf
text-to-image generator like StableDiffusion [35] to generate
a support set of images. In the representation step, we use a
feature extractor (that can be the same network as in the gen-
eration step) to extract feature prototypes that represent the
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textual category. Finally, we use simple nearest-neighbour
matching scheme to segment the target image using the pro-
totypes computed in the previous step.

This approach differs from prior work that largely ap-
proaches the problem in either of two ways. Starting from
multi-modal representations (e.g., CLIP [32]) to bridge vi-
sion and language, the first way relies on costly dense an-
notations for some known categories to fine-tune image-
level representations for the segmentation task. The sec-
ond category of prior work [5, 27, 30, 34, 46, 47] extend
large-scale vision-language models such as CLIP with ad-
ditional grouping mechanisms for better localisation using
only image-level captions, but no mask supervision. This,
however, requires expensive additional contrastive training
at scale. Additionally, most methods resort to heuristics,
such as thresholding, to segment the background (i.e., leave
some pixels unlabelled), as it often cannot be described as a
textual category. Finding an appropriate threshold, however,
can be challenging and may vary depending on the image,
often resulting in imprecise object boundaries. Effectively
handling the background remains an open issue.

Our three-step approach departs substantially from both
of these schemes. We show that large-scale text-to-image
generative models, such as StableDiffusion [35], can help
bridge the vision-and-language gap without the need for
annotations or costly training. Furthermore, diffusion models
also produce latent spaces that are semantically meaningful
and well-localised. This solves a second problem: multi-
modal embeddings are difficult to learn and often suffer from
ambiguities and differences in detail between modalities.
Instead, our approach can use unimodal features for open-
vocabulary segmentation, which offers several advantages.
Firstly, as text-to-image generators encode a distribution of
possible images, this offers a means to deal with intra-class
variation and captures the ambiguity in textual descriptions.
Secondly, the generative image models encode not only the
visual appearance of objects but also provide contextual
priors, which we use for direct background segmentation.

2. Related work
Open-vocabulary segmentation. Open-vocabulary seman-
tic segmentation is a relatively new problem and is typically
approached in two ways. The first line of work poses the
problem as “zero-shot”, i.e., segmenting unseen classes after
training on a set of observed classes with dense annotations.
Early approaches [2, 6, 12, 21] explore generative networks
to sample features using conditional language embeddings
for classes. Follow-up works [7, 11, 20, 23, 45, 49, 50] ap-
proach the problem in two steps, predicting class-agnostic
masks and aligning the embeddings of masks with language.
Different from our approach, all these works rely on mask
supervision for a set of known classes.

The second line of work eliminates the need for mask

annotations and instead aims to align image regions with lan-
guage using only image-text pairs. Some methods introduce
internal grouping mechanisms [25, 27, 34, 46, 47]. Another
line of work [5, 30, 33, 52] aims to learn dense features that
are better localised when correlated with language embed-
dings at pixel level. A closely related approach to ours is
ReCO [38], where CLIP is used for image retrieval com-
piling a set of exemplar images from ImageNet for a given
language query, which is then used for co-segmentation.
Diffusion models. Diffusion models [17, 39, 40] are a class
of generative methods that have seen tremendous success.
Dense annotations associate diffusion features with the de-
sired output for discriminative tasks [1, 22, 48]. Annotation-
free segmentation approaches are either closed-set [43] or
not open-vocabulary [28].

3. Method
Our goal is to devise an algorithm which, given a new vo-
cabulary of categories ci ∈ C formulated as natural language
queries, can segment any image against it. Let I ∈ RH×W×3

be an image to be segmented. Let Φv : RH×W×3 →
RH′W ′×D be an off-the-shelf visual feature extractor and
Φt : Rdt → RD a text encoder. Assuming that image and
text encoders are aligned, one can achieve segmentation by
simply computing a similarity function, for example, the
cosine similarity between the densely encoded image Φv(I)
and an encoding of a class label ci.

We propose two modifications to this approach. First, we
observe that comparing representations of the same modality
is better than across vision and language modalities. We thus
replace Φt(ci) with a D-dimensional visual representation P̄
of class ci, which we refer to as a prototype. In this case, the
same feature extractor can be used for both prototypes and
target images; thus, their comparison becomes straightfor-
ward and does not necessitate further training. Second, we
propose utilising multiple prototypes per category instead of
a single class embedding. This enables us to accommodate
intra-class variations in appearance, and, as we explain later,
it also allows us to exploit contextual priors, which in turn
help to segment the background.

Our approach, thus, proceeds in three steps: (1) a set
of support images is sampled based on vocabulary C, (2) a
set of prototypes P is calculated, and (3) a set of images
{I1, I2 . . . } is segmented against these prototypes. We ob-
serve that in practical applications, whole image collections
are processed using the same vocabulary, as altering the set
of target classes for individual images in an informed way
would already require some knowledge of their contents.
Steps (1) and (2) are, thus, performed very infrequently, and
their cost is heavily amortised. Next, we detail each step.
Support set generation. To construct a set of proto-
types, for each category ci, we define a prompt “A good
picture of a ⟨ci⟩” and generate a small batch of N



Figure 2. OVDiff overview. Prototype sampling: text queries are used to sample a set of support images which are further processed by
a feature extractor and a segmenter forming positive and negative (background) prototypes. Segmentation: image features are compared
against prototypes.The CLIP filter removes irrelevant prototypes based on global image contents.

support images S using Stable Diffusion [35].
Representing categories. Naïvely, prototypes P̄ci could be
constructed by averaging all features across all images for
class ci. This is unlikely to result in good prototypes because
not all pixels in the sampled images correspond to the class
specified by ci. Instead, we propose to extract the class pro-
totypes as follows.
Class prototypes. Our approach generates two sets of pro-
totypes, positive and negative, for each class. Positive proto-
types are extracted from image regions that are associated
with ⟨ci⟩, while negative prototypes represent “background”
regions. Thus, to obtain prototypes, the first step is segment-
ing the sampled images into foreground and background. To
identify regions most associated with ci, we use the fact that
the layout of a generated image is largely dependent on the
cross-attention maps of the diffusion model [15], i.e., pixels
attend more strongly to words that describe them. For a given
word or description (in our case ci), one can generate a set
of attribution maps A = {A1, A2, . . . , AN | An ∈ Rhw},
corresponding to the support set S, by summing the cross-
attention maps across all layers, heads, and denoising steps
of the network [41].

Yet, thresholding these attribution maps may not be op-
timal, as they are often coarse or incomplete, and some-
times only parts of objects receive high activation. To im-
prove segmentation, we propose to optionally leverage an
unsupervised instance segmentation method Γ. Unsuper-
vised segmenters are not vocabulary-aware and may pro-
duce multiple binary object proposals. We denote these as
Mn = {Mnr | Mnr ∈ {0, 1}hw}, where n indexes the
support images and r indexes the object masks (including a
mask for the background). We thus construct a promptable
extension of Γ segmenter to select appropriate proposals for
foreground and background: for each image, we select from
Mn the mask with the highest (lowest) average attribution
as the foreground (background), calling them M fg

n (Mbg
n )

Prototype aggregation. We can compute prototypes P g
n for

foreground and background regions (g ∈ {fg,bg}) as

P g
n =

(M̂g
n)

⊤Φv(Sn)

(M̂g
n)⊤M̂

g
n

∈ RD, (1)

where M̂g
n denotes a resized version of Mg

n that matches the
spatial dimensions of Φv(Sn). Thus, prototypes are obtained
by means of an off-the-shelf pretrained feature extractor and
computed as the average feature within each mask.

We refer to these as instance prototypes because they are
computed from each image individually, and each image in
the support set can be viewed as an instance of class ci.

In addition to instance prototypes, we found it helpful
to also compute class-level prototypes P̄ g by averaging the
instance prototypes weighted by their mask sizes as P̄ g =∑N

n=1 m
g
nP

g
n/

∑N
n=1 (M̂

g
n)

⊤M̂g
n.

Finally, we propose to augment the set of class and in-
stance prototypes using K-Means clustering of the masked
features to obtain part-level prototypes. We perform spa-
tial clustering separately on foreground and background re-
gions and take each cluster centroid as a prototype P g

k with
1 ≤ k ≤ K. The intuition behind this is to enable seg-
mentation at the level of parts, support greater intra-class
variability, and a wider range of feature extractors that might
not be scale invariant.

We consider the union of all these feature prototypes, for
both foreground and background, for each ci ∈ C.
Segmentation via prototype matching. To perform seg-
mentation of any target image I given a vocabulary C, we
first extract image features using the same visual encoder
Φv used for the prototypes. The vocabulary is expanded
with an additional background class for which a prototype
is a union of all background prototypes in the vocabulary.
For other classes we consider foreground prototypes. Then,
a segmentation map can simply be obtained by matching
dense image features to prototypes using cosine similarity.



Table 1. Open-vocabulary segmentation. Comparison of our ap-
proach, OVDiff, to the state of the art (under the mIoU metric). Our
results are an average of 5 seeds ±σ. ∗results from [5].

Method Support Further VOC Context ObjectSet Training

ReCo∗ [38] Real ✗ 25.1 19.9 15.7
ViL-Seg [25] ✗ ✓ 37.3 18.9 -
MaskCLIP∗ [52] ✗ ✗ 38.8 23.6 20.6
TCL [5] ✗ ✓ 51.2 24.3 30.4
CLIPpy [33] ✗ ✓ 52.2 - 32.0
GroupViT [46] ✗ ✓ 52.3 22.4 -
ViewCo [34] ✗ ✓ 52.4 23.0 23.5
SegCLIP [27] ✗ ✓ 52.6 24.7 26.5
OVSegmentor [47] ✗ ✓ 53.8 20.4 25.1
CLIP-DIY [44] ✗ ✗ 59.9 – 31.0
OVDiff (-CutLER) Synth. ✗ 62.8 28.6 34.9
OVDiff Synth. ✗ 66.3 ± 0.2 29.7 ± 0.334.6 ± 0.3

Table 2. Segmentation performance of OVDiff based on different
feature extractors.

Feature MAE DINO CLIP CLIP SD SD + DINO
Extractor (token) (keys) + CLIP

VOC 54.9 59.1 51.4 61.8 64.4 66.4

Category pre-filtering. To limit the impact of spurious cor-
relations that might exist in the feature space of the visual
encoder, we introduce a pre-filtering process for the target vo-
cabulary given image I . Specifically, we propose to leverage
CLIP [32] in a multi-label fashion to constrain the segmen-
tation to the subset of categories C′ ⊆ C that appear in the
target image. First, we encode the target image and each
category using CLIP. Any categories that do not score higher
than 1/|C| are removed from consideration. If more than η
categories are present, then the top-η are selected. We then
form “multi-label” prompts as “⟨ca⟩ and ⟨cb⟩ and ...”
where the categories are selected among the top scoring ones
taking into account all 2η combinations. The best-scoring
multi-label prompt determines the final list of categories and,
thus, prototypes for segmentation.
“Stuff” filtering. Occasionally, ci might not describe a
countable object category but an identifiable region in the
image, e.g., sky, often referred to as a “stuff” class. “Stuff”
classes warrant additional consideration as they might appear
as background in images of other categories. As a result, the
process outlined above might sample background prototypes
for one class that coincide with the foreground prototypes of
another. To mitigate this issue, we introduce an additional
filtering step to detect and reject such prototypes, when the
full vocabulary, i.e., the set of classes under consideration,
is known. First, we only consider foreground prototypes
for “stuff” classes. Additionally, any negative prototypes of
“thing” classes with high cosine similarity with any of the
“stuff” class prototypes are simply removed. In our experi-
ments, we use ChatGPT [31] to automatically categorise a
set of classes as “thing” or “stuff”.

4. Experiments

We evaluate OVDiff on the open-vocabulary semantic
segmentation task on validation splits of PASCAL VOC
(VOC) [10], PASCAL Context (Context) [29] and COCO-
Object (Object) [3] datasets reporting mean Intersection-
over-Union. First, we consider different feature extractors
and investigate how they can be grounded by our approach.
We then compare our method with prior work, and conclude
with a qualitative results on in-the-wild images. We leave
specification of implementation details, ablations and further
experiments for the Appendix.
Grounding feature extractors. Our method can be com-
bined with any pretrained visual feature extractor for con-
structing prototypes and extracting image features. To ver-
ify this quantitatively, we experiment with various self-
supervised ViT feature extractors (Tab. 2): DINO [4],
MAE [14], and CLIP [32]. We also use SD features.

We find that SD performs the best, though CLIP and
DINO also show strong performance based on our experi-
ments on VOC. As feature extractors have different training
objectives, we hypothesise that their feature spaces might be
complementary. Thus, we also consider a combination of
SD, DINO, and CLIP, which performs the best. We adopt
this formulation for the main set of experiments.
Comparison to existing methods. In Tab. 1, we compare
our method with prior work that does not rely on manual
mask annotation on three datasets: VOC, Context, Object.
We include a brief overview of the methods in the supple-
ment. We find that our method compares favourably, outper-
forming other methods in all settings. In particular, results
on VOC show the largest margin, with more than 5% im-
provement over prior work.

We also consider a version of our method, OVDiff (-
CutLER), that does not rely on an additional unsupervised
segmenter Γ. Instead, the attention masks are thresholded.
We observe that such a version of OVDiff has strong perfor-
mance, outperforming prior work as well. CutLER is helpful,
but not a critical component, and OVDiff performs strongly
without it. In Fig. 1, we investigate OVDiff on challenging
in-the-wild images with simple and complex backgrounds.

5. Conclusion

We introduce OVDiff, an open-vocabulary segmentation
method that operates in two stages. First, given queries,
support images are sampled and their features are extracted
to create class prototypes. These prototypes are then com-
pared to features from an inference image. This approach
offers multiple advantages: diverse prototypes accommodat-
ing various visual appearances and negative prototypes for
background localisation. OVDiff outperforms prior work on
benchmarks, exhibiting fewer errors, effectively separating
objects from background.
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Supplementary Material
In this supplementary material, we provide additional exper-
imental results, including further ablations and qualitative
comparisons (Appendix A), consider the limitations and
broader impacts of our work (Appendix B), and conclude
with additional details concerning the implementation (Ap-
pendix C).

A. Additional experiments
This section provides additional experimental results of
OVDiff.

A.1. Additional Comparisons

Category filter. To ensure that the category pre-filtering
does not give our approach an unfair advantage, we augment
two methods (TCL [5] and OVSegmentor [47], which are
the closest baselines with code and checkpoints available)
with our category pre-filtering. We evaluate on the Pascal
VOC dataset (where the category filter shows a significant
impact; see Table 3) and report the results in Tab. A.2. We
observe that TCL improves by 0.6, while the performance
of OVSegmentor drops by 0.1. On the contrary, our method
benefits substantially from this component, but it still shows
stronger performance without the filter than baselines with.
Influence of Γ segmentation method. We also further in-
vestigate the use of CutLER [42] to obtain segmentation
masks. We also provide example results of segmentation in
Fig. C.8. In Tab. A.3, we devise a baseline where CutLER-
predicted masks are used to average the CLIP image en-
coder’s final spatial tokens after projection. Averaged tokens
are compared with CLIP text embeddings to assign a class.
While relying on pre-trained components (like ours), this
avoids support set generation. In the same table, we also con-
sider whether the objectness prior provided by CutLER could
be beneficial to other methods as well. We consider a version
of TCL [5] and OVSegmentor [47] which we augment with
CutLER. That is, after methods assign class probabilities to
each pixel/patch, a majority voting for a class is performed in
every region predicted by CutLER. This combines CutLER’s
understanding of objects and their boundaries, aspects where
prior methods struggle, with open-vocabulary segmentation.
However, we observe that this negatively impacts the perfor-
mance of these methods, which we attribute to only a limited
performance of CutLER in complex scenes present in the
datasets. Finally, we also include a version of OVDiff that
does not rely on CutLER for mask extractions, instead using
thresholded masks. We observe that such a version of our
method also has strong performance.

We additionally experiment with stronger segmenters to
understand the influence of FG/BG mask quality. We replace
our FG/BG segmentation approach with strong supervised
models: with SAM, we achieve 67.1 on VOC, and with

Figure A.1. PascalVOC results with increasing support size N .

Grounded SAM, 68.5. This slightly improves results from
66.3 of our configuration with CutLER, but the performance
gain is not large and thus not critical.
Class prompts. We additionally consider whether correc-
tions introduced to class prompts might have similarly pro-
vided additional benefits to our approach (see Appendix C.3
for details). To that end, we also evaluate TCL and OVSeg-
menter (methods that do not rely on additional prompt cu-
ration) with our corrected prompts and consider a version
of our method without such corrections in Tab. A.4. We
observe only marginal to no impact on the performance.
Prompt template Finally, we consider the prompt tem-
plate employed when sampling support image set: “A good
picture of a ⟨ci⟩” for class prompt ci. This template
is generic and broadly applicable to virtually any natural
language specification of a target class. While prior work
adopts prompt expansion by considering a list of synonyms
and subcategories, it is not entirely clear how such a strat-
egy could be systematically performed for any in-the-wild
prompts, such as a “chocolate glazed donut”. We experiment
with a list of synonyms and subclasses, as employed by [33],
on VOC datasets measuring 66.4 mIoU, which is similar to
our single prompt performance 66.3 ± 0.2. Curating such
lists automatically is an interesting future scaling direction.
Computation cost. We focus on a construction of a method
to show that existing foundational diffusion models can be
used for segmentation with great efficacy without further
training. OVDiff requires computing prototypes instead.
With our unoptimized implementation, we measure around
110 ± 10s to calculate prototypes using SD for a single
class, or around 1.14 TFLOP/s-hours of compute. While the
focus of this study is not computational efficiency, we can
compare prototype sampling to the cost of additional training
of other methods: TCL requires 2688, GroupViT 10752, and
OVSegmentor 624 TFLOP/s-hours.1 While training has an
upfront compute cost and requires special infrastructure (e.g.
OVSegmentor uses 16×A100s), OVDiff’s prototype set can
be grown progressively as needed, while showing better
performance.

A.2. Ablations

Next, we ablate the components of OVDiff on VOC and Con-
text datasets. For these experiments, only SD is employed
as a feature extractor. We remove individual components

1Estimated as training time × num. GPUs × theoretical peak TFLOP/s
for GPU type.



Figure A.2. Qualitative comparison on challenging in-the-wild images with TCL, which struggles with object boundaries, missing parts of
objects, or including surroundings. Our method has more appropriate boundaries and makes fever errors overall, but does produce a small
halo effect around objects due to the upscaling of feature extractors.

and measure the change in segmentation performance, sum-
marising the results in Tab. A.1. Our first observation is
that background prototypes have a major impact on per-
formance. When removing them from consideration, we
instead threshold the similarity scores of the images with
the foreground prototypes (set to 0.72, determined via grid
search); in this case, the performance drops significantly,
which again highlights the importance of leveraging con-
textual priors. On Context, the impact is less significant,
likely due to the fact that the dataset contains “stuff” cate-
gories. Removing the instance- and part-level prototypes
also negatively affects performance. Additionally, remov-
ing the category pre-filtering has a major impact. We hy-
pothesize that this introduces spurious correlations between
prototypes of different classes. On Context, “stuff” filter-
ing is also important. We again consider the importance of
using an unsupervised segmenter, CutLER, for prototype
mask extractions, using thresholding instead. We find this
slightly reduces performance in this setting as well. Overall,
background prototypes and pre-filtering contribute the most.

Finally, we measure the effect of varying the size of the
support set N in Fig. A.1. We find that OVDiff already
shows strong performance even at a low number of samples
for each query. With increasing the number of samples, the
performance improves, saturating at around N = 32. which
we use in our main experiments.
Prototype combinations. In Tab. A.7, we consider the three
different types of prototypes described in Section 3 and test
their performance individually and in various combinations.
We find that the “part” prototypes obtained by K-means
clustering show strong performance when considered indi-
vidually on VOC. Instance prototypes show strong individual
performance on Context, as well as in combination with the
average category prototype. The combination of all three

Table A.1. Ablation of different components. Each component is
removed in isolation, measuring the drop (∆) in mIoU on VOC
and Context datasets. Using SD features.

Configuration VOC ∆ Context ∆

Full 64.4 29.4

w/o bg prototypes 53.2 -11.2 28.9 -0.5
w/o category filter 54.4 -10.0 25.2 -4.2
w/o “stuff” filter n/a 26.9 -2.5
w/o CutLER 60.4 -4.0 27.6 -1.8
w/o sliding window 62.2 -2.2 28.6 -0.8
only average P̄ 62.5 -1.9 28.4 -1.0

types shows the strongest results across the two datasets,
which is what we adopt in our main set of experiments.

We also consider the treatment of prototypes under the
stuff filter. We investigate the impact of not excluding back-
ground prototypes for “stuff" classes. In this setting, we
measure 29.1 on Context, which is a slight reduction in per-
formance. We also investigate the benefit of categorisation
into “things” and “stuff” used in the stuff filter component.
Instead, we filter all background prototypes using all fore-
ground prototypes. In this configuration, we measure 27.6
on Context. Both configurations show a reduction from 29.4,
measuring using the stuff filter with categorisation in “stuff”
and “things”, as used in our main experiments. Finally,
we experiment by removing part-level prototypes for “stuff”
classes, which also results in a performance drop to 28.0.
K - number of clusters. In Tab. A.5, we investigate the
sensitivity of the method to the choice of K for the number
of “part” prototypes extracted using K-means clustering.
Although our setting K = 32 obtains slightly better results
on Context and VOC, other values result in comparable
segmentation performance suggesting that OVDiff is not



Table A.2. Use of category filter component. OVDiff without
category filter outperforms prior work with cat. filter.

Model Category filter
✗ ✓

OVSegmentor 53.8 53.7
TCL 51.2 51.8
TCL (+PAMR) 55.0 56.0
OVDiff 56.2 66.4

Table A.3. Application of CutLER. Prior work does not benefit
from using CutLER during inference, while OVDiff shows strong
results without it.

Model CutLER VOC Context Object

CLIP ✓ 33.0 11.6 11.1
OVSegmentor 53.8 20.4 25.1
OVSegmentor ✓ 38.7 14.4 16.8
TCL 51.2 24.3 30.4
TCL ✓ 43.1 20.5 22.7
OVDiff 62.8 28.6 34.9
OVDiff ✓ 66.3 ± 0.2 29.7 ± 0.3 34.6 ± 0.3

Table A.4. Using corrected prompts. We consider if corrected class
names benefit prior work. We observe negligible to no effect.

Model Correction VOC Context Object

OVSegmentor 53.8 20.4 25.1
OVSegmentor ✓ 53.9 20.4 25.1
TCL 51.2 24.3 30.4
TCL ✓ 50.6 24.3 30.4
OVDiff 66.1 29.5 34.9
OVDiff ✓ 66.3 ± 0.2 29.7 ± 0.3 34.6 ± 0.3

Table A.5. Choice of K for number of centroids.

K VOC Context

8 63.8 29.2
16 64.0 29.3
32 64.4 29.4
64 64.3 28.0

sensitive to the choice of K and a range of values is viable.
SD features. When using Stable Diffusion as a feature ex-
tractor, we consider various combinations of layers/blocks
in the UNet architecture. We follow the nomenclature used
in the Stable Diffusion implementation where consecutive
layers of Unet are organised into blocks. There are 3 down-
sampling blocks with 2 cross-attention layers each, a mid-
block with a single cross-attention, and 3 up-sampling blocks
with 3 cross-attention layers each. We report our findings in
Tab. A.6. Including the first and last cross-attention layers in
the feature extraction process has a small positive impact on
segmentation performance, which we attribute to the high

Table A.6. Ablation of different SD feature configurations. Remov-
ing first and last cross attention layers, mid, 1st and 2nd upsampling
blocks (all layers in the block) has a negative effect.

1st Mid Up-1 Up-2 Last
layer block block block layer Context

✓ ✓ ✓ ✓ ✓ 29.4
✓ ✓ ✓ ✓ 29.4

✓ ✓ ✓ ✓ 29.2
✓ ✓ ✓ ✓ 27.3
✓ ✓ ✓ ✓ 28.9
✓ ✓ ✓ ✓ 29.3

Table A.7. Ablation of various configurations for prototypes. We
consider average P̄ , instance Pn, and part Pk prototypes individ-
ually and in various combinations on VOC and Context datasets.
Combination of all three types of prototypes shows strongest re-
sults.

P̄ Pn Pk VOC Context

✓ ✓ ✓ 64.4 29.4
✓ ✓ 61.7 29.3
✓ ✓ 63.5 29.4

✓ ✓ 62.5 28.4
✓ 63.7 28.8

✓ 60.0 29.0
✓ 62.5 28.4

feature resolution. We also consider excluding features from
the middle block of the network due to small 8× 8 resolu-
tion but observe a small negative impact on performance on
the Context dataset. We also investigate whether including
the first (Up-1) and the second upsampling (Up-2) blocks
are necessary. Without them, the performance drops the
most out of the configurations considered. Thus, we use a
concatenation of features from the middle, first and second
upsampling blocks and the first and last layers in our main
experiments.

A.3. Evaluation without background

One of the notable advantages of our approach is the ability
to represent background regions via (negative) prototypes,
leading to improved segmentation performance. Neverthe-
less, we hereby also evaluate our method under a differ-
ent evaluation protocol adopted in prior work, which ex-
cludes the background class from the evaluation. We note
that prior work often requires additional considerations to
handle background, such as thresholding. In this setting,
however, the background class is not predicted, and the
set of categories, thus, must be exhaustive. As in practice,
this is not the case, and datasets contain unlabelled pixels
(or simply a background label), such image areas are re-
moved from consideration. Consequently, less emphasis



Figure A.3. Qualitative comparison on in-the-wild images. OVDiff performs significantly better than prior state-of-the-art, TCL, on wildlife
images containing multiple instances, studio photos with simple backgrounds, images containing multiple categories and an image containing
a rare instance of a class.

Table A.8. Comparison with methods when background is excluded
(decided by ground truth). OVDiff shows comparable performance
to prior works despite only relying on pretrained feature extractors.
∗ result from [5].

Method VOC-20 Context-59 ADE Stuff City

CLIPpy – – 13.5 – –
OVSegmentor – – 5.6 – –
GroupViT∗ 79.7 23.4 9.2 15.3 11.1
MaskCLIP∗ 74.9 26.4 9.8 16.4 12.6
ReCo∗ 57.5 22.3 11.2 14.8 21.1
TCL 77.5 30.3 14.9 19.6 23.1
OVDiff 80.9 32.9 14.1 20.3 23.4

is placed on object boundaries in this setting. As in this
setting the background prediction is invalid, we do not con-
sider negative prototypes. For this setting, we benchmark on
5 datasets following [5]: PascalVOC without background,
termed VOC-20, Pascal Context without background, termed
Context-59, and ADE20k [51], which contains 150 fore-
ground classes, termed ADE-150, COCO-Stuff, termed Stuff,
and Cityscapes, termed City. This setting tests the ability of
various methods to discriminate between different classes,
which for OVDiff is inherent to the choice of feature ex-
tractors. Despite this, our method shows competitive perfor-
mance accross wide range of benchmarks Tab. A.8.

A.4. In-the-wild

In Fig. A.2 and Fig. A.3, we investigate OVDiff on chal-
lenging in-the-wild images with simple and complex back-
grounds. We compare with TCL+PAMR. In the first three
images, both methods correctly detect the objects identi-
fied by the queries. OVDiff has small false positive "corgi"
patches. TCL however misses large parts of the objects,
such as most of the person, and parts of animal bodies. The
distinction between the house and the bridge in the second
image is also better with OVDiff. We also note that our
segmentations sometimes have halos around objects. This
is caused by upscaling the low-resolution feature extractor
(SD in this case). The last two images contain challenging
scenarios where both approaches struggle. The fourth image
only contains similar objects of the same type. Both meth-
ods incorrectly identify plain donuts as either of the speci-
fied queries. OVDiff however correctly identifies chocolate
donuts with varied sprinkles and separates all donuts from
the background. In the final picture, the query “red car” is
added, although no such object is present. The extra query
causes TCL to incorrectly identify parts of the red bus as
a car. Both methods incorrectly segment the gray car in
the distance. However, overall, our method is more robust
and delineates objects better despite the lack of specialized
training or post-processing.

A.5. Explaining segmentations

We inspect how our method segments certain regions by
considering which prototype from P fg

c was used to assign



Figure A.4. Analysis of the segmentation output by linking regions to samples in the support set. Left: our results for different classes.
Middle: select color-coded regions “activated” by different prototypes for the class. Right: regions in the support set images corresponding
to these (part-level) prototypes.

a class c to a pixel. Prototypes map to regions in the sup-
port set from where they were aggregated, e.g., instances
prototypes are associated with foreground masks M fg

n and
part prototypes with centroids/clusters. By following these
mappings, a set of support image regions can be retrieved
for each segmentation decision, providing a degree of ex-
plainability. Fig. A.4 illustrates this for examples of dog,
cat, and bird classes. For visualisation purposes, selected
prototypes and corresponding regions are shown. On the
left, we show the full segmentation result of each image. In
the middle, we select regions that correlate best with certain
class prototypes. On the right, we retrieve images from the
support set and highlight where each prototype emerged.
We find that meaningful part segmentation merges due to
clustering the support image features, and similar regions
are segmented by corresponding prototypes. However, some-
times region covered in the input image will not fully align
with the whole prototype (e.g. cat’s face around the eyes or
lower belly/tail of bird). Each segmentation is explained
by precise regions in a small support set.

A.6. Qualitative results

We include additional qualitative results from the benchmark
datasets in Fig. A.5. Qualitative results are shown in Fig. A.6
contain comparison with TCL. This figure highlights a key
benefit of our approach: the ability to exploit contextual pri-
ors through the use of background prototypes, which in turn
allows for the direct assignment of pixels to a background
class. This improves segmentation quality because it makes
it easier to differentiate objects from the background and to
delineate their boundaries. In comparison, TCL predictions

are very coarse and contain more noise. Our method achieves
high-quality segmentation across all examples without any
post-processing or refinement steps.

Our method achieves high-quality segmentation across all
examples without any post-processing or refinement steps.
In Fig. A.7, we show examples of support images sampled
for some things, and stuff categories. In Fig. C.9, we show
examples of support set images sampled for rare pikachu
class.

B. Broader impact
Semantic segmentation is a component in a vast and diverse
spectrum of applications in healthcare, image processing,
computer graphics, surveillance and more. As for any foun-
dational technology, applications can be good or bad. OVD-
iff is similarly widely applicable. It also makes it easier to
use semantic segmentation in new applications by leverag-
ing existing and new pre-trained models. This is a bonus
for inclusivity, affordability, and, potentially, environmental
impact (as it requires no additional training, which is usu-
ally computationally intensive); however, these features also
mean that it is easier for bad actors to use the technology.

Because OVDiff does not require further training, it is
more versatile but also inherits the weaknesses of the com-
ponents it is built on. For example, it might contain the
biases (e.g., gender bias) of its components, in particular
Stable Diffusion [37], which is used for generating support
images for any given category/description. Thus, it should
not be exposed without further filtering and detection of, e.g.,
NSFW material in the sampled support set. Finally, OVDiff
is also bound by the licenses of its components.



Figure A.5. Additional qualitative results. Images from Pascal VOC (top), Pascal Context (middle), and COCO Object (bottom).

B.1. Limitations

As OVDiff relies on pretrained components, it inherits some
of their limitations. OVDiff works with the limited resolution
of feature extractors, due to which it might occasionally

miss tiny objects. Furthermore, OVDiff cannot segment
what the generator cannot generate. For example, current
diffusion models struggle with producing legible text, which
can make it difficult to segment specific words. Furthermore,
applications in domains far from the generator’s training data



Figure A.6. Qualitative results. OVDiff in comparison to TCL (+ PAMR). OVDiff provides more accurate segmentations across a range
objects and stuff classes with well defined object boundaries that separate from the background well.

(e.g. medical imaging) are unlikely to work out of the box.

C. OVDiff: Further details
In this section, we provide additional details concerning the
implementation of OVDiff. We begin with a brief overview
of the attention mechanism and diffusion models central to
extracting features and sampling images. We review differ-
ent feature extractors used. We specify the hyperparameter
setting for all our experiments and provide an overview of
the exchange with ChatGPT used to categorise classes into
“thing” and “stuff”.

C.1. Preliminaries

Attention. In this work, we make use of pre-trained ViT [8]
networks as feature extractors, which repeatedly apply multi-
headed attention layers. In an attention layer, input se-
quences X ∈ Rlx×d and Y ∈ Rly×d are linearly project
to forms keys, queries, and values: K = WkY, Q =
WqX, V = WvX . In self-attention, X = Y . Attention is
calculated as A = softmax( 1√

d
QK⊤), and softmax is ap-

plied along the sequence dimension ly . The layer outputs an
update Z = X +A ·V . ViTs use multiple heads, replicating
the above process in parallel with different projection matri-
ces Wk,Wq,Wv . In this work, we consider queries and keys
of attention layers as points where useful features that form
meaningful inner products can be extracted. As we detail
later (Appendix C.2), we use the keys from attention layers
of ViT feature extractors (DINO/MAE/CLIP), concatenating
multiple heads if present.
Text-to-image diffusion models. Diffusion models are a
class of generative models that form samples starting with
noise and gradually denoising it. We focus on latent diffusion
models [35] which operate in the latent space of an image
VAE [19] forming powerful conditional image generators.

During training, an image is encoded into VAE latent space,
forming a latent vector z0. A noise is injected forming
a sample zτ ∼ N (zτ ;

√
1− ατz0, ατI) for timestep τ ∈

{1 . . . T}, where ατ are variance values that define a noise
schedule such that the resulting zT is approximately unit
normal. A conditional UNet [36], ϵθ(zt, t, c), is trained to
predict the injected noise, minimising the mean squared error
Et (αt∥ϵθ(zt, t, c)− z0∥2) for some caption c and additional
constants at. The network forms new samples by reversing
the noise-injecting chain. Starting from ẑT ∼ N (ẑT ; 0, I),
one iterates ẑt−1 = 1√

1−αt
(ẑt+αtϵθ(ẑt, t, c))+

√
αtẑt until

ẑ0 is formed and decoded into image space using the VAE
decoder. The conditional UNet uses cross-attention layers
between image patches and language (CLIP) embeddings to
condition on text c and achieve text-to-image generation.

C.2. Feature extractors

OVDiff is buildable on top of any pre-trained feature extrac-
tor. In our experiments, we have considered several networks
as feature extractors with various self-supervised training
regimes:
• DINO [4] is a self-supervised method that trains networks

by exploring alignment between multiple views using an
exponential moving average teacher network. We use
the ViT-B/8 model pre-trained on ImageNet2 and extract
features from the keys of the last attention layer.

• MAE [13] is a self-supervised method that uses masked
image inpainting as a learning objective, where a portion
of image patches are dropped, and the network seeks to
reconstruct the full input. We use the ViT-L/16 model
pre-trained on ImageNet at a resolution of 448 [18].3 The
2Model and code available at https : / / github . com /

facebookresearch/dino.
3Model and code from https : / / github . com /

facebookresearch/long_seq_mae.

https://github.com/facebookresearch/dino
https://github.com/facebookresearch/dino
https://github.com/facebookresearch/long_seq_mae
https://github.com/facebookresearch/long_seq_mae


(a) boat (b) person

(c) sky (d) water

(e) light (f) parking meter

(g) mountain (h) horse

Figure A.7. Images sampled for a support set of some categories.

keys of the last layer of the encoder network are used. No
masking is performed.

• CLIP [32] is trained using image-text pairs on an internal

dataset WIT-400M. We use ViT-B/16 model4. We consider
two locations to obtain dense features: keys from a self-
attention layer of the image encoder and tokens which are

4Model and code from https://github.com/openai/CLIP.

https://github.com/openai/CLIP


the outputs of transformer layers. We find that keys of the
second-to-last layer give better performance.

• We also consider Stable Diffusion5 (v1.5) itself as a fea-
ture extractor. To that end, we use the queries from the
cross-attention layers in the UNet denoiser, which corre-
spond to the image modality. Its UNet is organised into
three downsampling blocks, a middle block, and three
upsampling blocks. We observe that the middle layers
have the most semantic content, so we consider the mid-
dle block, 1st and 2nd upsampling blocks and aggregate
features from all three cross-attention layers in each block.
As the features are quite low in resolution, we include the
first downsampling cross-attention layer and the last up-
sampling cross-attention layer as well. The feature maps
are bilinearly upsampled to resolution 64 × 64 and con-
catenated. A noise appropriate for τ = 200 timesteps is
added to the input. For feature extraction, we run SD in
unconditional mode, supplying an empty string for text
caption.

Figure C.8. FG/BG segmenta-
tion of classes of water, snow
and grass. The foreground is
in red, while the background is
shown in blue.

Figure C.9. Example images
from the support set of a rare
pikachu class.

C.3. Datasets

We evaluate on validation splits of PASCAL VOC (VOC),
Pascal Context (Context) and COCO-Object (Object)
datasets. PASCAL VOC [9, 10] has 21 classes: 20 fore-
ground plus a background class. For Pascal Context [29],
we use the common variant with 59 foreground classes and
1 background class. It contains both “things” and “stuff”
classes. The COCO-Object is a variant of COCO-Stuff [3]
with 80 “thing” classes and one class for the background.
Textual class names are used as natural language specifica-
tions of names. We renamed or specified certain class names
to fix errors (e.g. pottedplant → potted plant),
resolve ambiguity better (e.g. mouse → computer
mouse) or change to more common spelling/word (e.g.
aeroplane → airplane), resulting in 14 fixes. We
experiment and measure the impact of this in Appendix A.1
for our and prior work.

5We use implementation from https : / / github . com /
huggingface/diffusers.

C.4. Comparative baselines

We briefly review the prior work in used in our experi-
ments, mainly in Table 1. We consider baselines that do
not rely on mask annotations and have code and check-
points available or detail their evaluation protocol that
matches that used in other prior works [5, 46, 47].Most
prior work [5, 25, 27, 34, 46, 47] trains image and text
encoders on large image-text datasets with a contrastive
loss. The methods mainly differ in their architecture and
use of grouping mechanisms to ground image-level text on
regions. ViL-Seg [25] uses online clustering, GroupViT [46]
and ViewCo [34] employ group tokens. OVSegmentor [47]
uses slot-attention and SegCLIP [27] a grouping mecha-
nism with learnable centers. CLIPPy [33], TCL [5], and
MaskCLIP [52] predict classes for each image patch: [33]
use max-pooling aggregation, [5] self-masking, and [52]
modify CLIP for dense predictions. To assign a background
label [5, 25, 27, 34, 46] use thresholding while [33] uses
dataset-specific prompts. CLIP-DIY [44] leverages CLIP
as a zero-shot classifier and applies it on multiple scales to
form a dense segmentation. ReCO [38] is closer in spirit to
our approach as it uses a support set for each prompt; this set,
however, is CLIP-retrieved from curated image collections,
which may not be applicable for any category in-the-wild.

We also note that prior work builds on top of similar
pre-trained components such as CLIP in [5, 27, 38, 52],
OpenCLIP in [44], DINO + T5/RoBERTa in [33, 47]. We
additionally make use of StableDiffusion, which is trained
on a larger dataset (3B, compared to 400M of CLIP or 2B or
OpenCLIP). OVDiff is, however, fundamentally different to
all prior work, as (a) it generates a support set of synthetic
images given a class description, and (b) it does not rely on
additional training data and further training for learning to
segment.

C.5. Hyperparameters

OVDiff has relatively few hyperparameters and we use the
same set in all experiments. Similar to [5, 46, 47], we em-
ploy a sliding window approach. We use two scales to aid
with the limited resolution of off-the-shelf feature extractors
with square window sizes of 448 and 336 and a stride of
224 pixels. We set the size of the support set to N = 32.
For the diffusion model, we use Stable Diffusion v1.5; for
unsupervised segmenter Γ, we employ CutLER [42]. Un-
less otherwise specified, N = 32 images are sampled using
classifier-free guidance scale [16] of 8.0 and 30 denoising
steps. We employ DPM-Solver scheduler [26]. When
sampling images for the support sets, we also use a nega-
tive prompt “text, low quality, blurry, cartoon, meme, low
resolution, bad, poor, faded". If/when segmenter Γ fails to
extract any components in a sampled image, a fallback of
adaptive thresholding of An is used, following [24]. During
inference, we set η = 10, which results in 1024 text prompts

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers


processed in parallel, a choice made mainly due to computa-
tional constraints. We set the thresholds for the “stuff” filter
between background prototypes for “things” classes and the
foreground of “stuff” at 0.85 for all feature extractors. When
sampling, a seed is set for each category individually to aid
reproducibility. With our unoptimized implementation, we
measure around 110± 10s to calculate prototypes (sample
images, extract features and aggregate) for a single cate-
gory or 50.2± 2s without clustering using SD. Using CLIP,
we measure 49.2 ± 0.2s with clustering and 47.7 ± 0.2s
without. We note that sampling time grows linearly: we
measure 55s for 16, 110s for 32, and 213s for 64 images per
class. The prototype storage requirements are 0.39MB using
CLIP/DINO for each class.

We additionally measure the speed of inference at 0.6s
per image, which is slightly slower but comparable to 0.2s
for TCL and 0.08s for OVSegmentor. We performed infer-
ence measurements using SD on the same machine with a
2080Ti GPU using 21 classes and the same resolution/sliding
window settings for all methods.

C.6. Interaction with ChatGPT

We interact with ChatGPT to categorise classes into “stuff”
and “things” for the stuff filter component. Due to input lim-
its, the categories are processed in blocks. Specifically, we
input “In semantic segmentation, there are "stuff" or "thing"
classes. Please indicate whether the following class prompts
should be considered "stuff" or "things":”. We show the out-
put in Tab. C.9. Note there are several errors in the response,
e.g. glass, blanket, and trade name are actually in-
stances of tableware, bedding and signage, respectively, so
should more appropriately be treated as “things”. Similarly,
land and sand might be more appropriately handled as
“stuff”, same as snow and ground. Despite this, We find
ChatGPT contains sufficient knowledge when prompted with
"in semantic segmentation". We have estimated the accuracy
of ChatGPT in thing/stuff classification using the categories
of COCO-Stuff, which are defined as 80 "things" and 91
"stuff" categories. ChatGPT achieves an accuracy rate of
88.9% in this case. We also measure the impact the potential
errors have on our performance by providing “oracle" an-
swers on the Context dataset. We measure 29.6 mIoU, which
is similar to 29.7±0.3 of using ChatGPT, showing that small
errors do not drastically affect the method, however, enable
using “stuff" filter component, which improves performance
(see Table 3).

Table C.9. Response from interaction with ChatGPT. We used
ChatGPT model to automatically categorise classes in “stuff” or
“things”.

airplane: thing window: thing awning: thing
bag: thing wood: stuff streetlight: thing
bed: thing windowpane: thing booth: thing
bedclothes: stuff earth: thing television receiver: thing
bench: thing painting: thing dirt track: thing
bicycle: thing shelf: thing apparel: thing
bird: thing house: thing pole: thing
boat: thing sea: thing land: thing
book: thing mirror: thing bannister: thing
bottle: thing rug: thing escalator: thing
building: thing field: thing ottoman: thing
bus: thing armchair: thing buffet: thing
cabinet: thing seat: thing poster: thing
car: thing desk: thing stage: thing
cat: thing wardrobe: thing van: thing
ceiling: stuff lamp: thing ship: thing
chair: thing bathtub: thing fountain: thing
cloth: stuff railing: thing conveyer belt: thing
computer: thing cushion: thing canopy: thing
cow: thing base: thing washer: thing
cup: thing box: thing plaything: thing
curtain: stuff column: thing swimming pool: thing
dog: thing signboard: thing stool: thing
door: thing chest of drawers:thing barrel: thing
fence: stuff counter: thing basket: thing
floor: stuff sand: thing waterfall: thing
flower: thing sink: thing tent: thing
food: thing skyscraper: thing minibike: thing
grass: stuff fireplace: thing cradle: thing
ground: stuff refrigerator: thing oven: thing
horse: thing grandstand: thing ball: thing
keyboard: thing path: thing step: stuff
light: thing stairs: thing tank: thing
motorbike: thing runway: thing trade name: stuff
mountain: stuff case: thing microwave: thing
mouse: thing pool table: thing pot: thing
person: thing pillow: thing animal: thing
plate: thing screen door: thing lake: stuff
platform: stuff stairway: thing dishwasher: thing
plant: thing river: thing screen: thing
road: stuff bridge: thing blanket: stuff
rock: stuff bookcase: thing sculpture: thing
sheep: thing blind: thing hood: thing
shelves: thing coffee table: thing sconce: thing
sidewalk: stuff toilet: thing vase: thing
sign: thing hill: thing traffic light: thing
sky: stuff countertop: thing tray: stuff
snow: stuff stove: thing ashcan: thing
sofa: thing palm: thing fan: thing
table: thing kitchen island: thing pier: thing
track: stuff swivel chair: thing crt screen: thing
train: thing bar: thing bulletin board: thing
tree: thing arcade machine: thing shower: thing
truck: thing hovel: thing radiator: thing
monitor: thing towel: thing glass: stuff
wall: stuff tower: thing clock: thing
water: stuff chandelier: thing flag: thing
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