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Abstract

The impressive achievements of generative models in cre-
ating high-quality videos have raised concerns about dig-
ital integrity and privacy vulnerabilities. Recent works to
combat Deepfakes videos have developed detectors that are
highly accurate at identifying GAN-generated samples. How-
ever, the robustness of these detectors on diffusion-generated
videos generated from video creation tools (e.g., SORA by
OpenAl, Runway Gen-2, and Pika, etc.) is still unexplored.
In this paper, we propose a novel framework for detecting
videos synthesized from multiple state-of-the-art (SOTA) gen-
erative models, such as Stable Video Diffusion. We find
that the SOTA methods for detecting diffusion-generated
images lack robustness in identifying diffusion-generated
videos. Our analysis reveals that the effectiveness of these
detectors diminishes when applied to out-of-domain videos,
primarily because they struggle to track the temporal fea-
tures and dynamic variations between frames. To address
the above-mentioned challenge, we collect a new benchmark
video dataset for diffusion-generated videos using SOTA
video creation tools. We extract representation within ex-
plicit knowledge from the diffusion model for video frames
and train our detector with a CNN + LSTM architecture. The
evaluation shows that our framework can well capture the
temporal features between frames, achieves 93.7% detection
accuracy for in-domain videos, and improves the accuracy
of out-domain videos by up to 16 points.

1. Introduction

The realm of video creation is undergoing a significant trans-
formation with the advent of video generation tools, such
as Stable Video Diffusion [5], SORA by OpenAl [6], Run-
wayML [3], Pika [2], and Show-1 [23]. These cutting-edge
tools are revolutionizing industries from design, market-
ing, and entertainment to education by creating high-quality
video content. The pivotal shift is opening up a myriad
of possibilities for creators everywhere, yet poses societal
dangers, notably in their widespread use of spreading dis-
information, propaganda, scams, and phishing — evidenced
by cases like the Taylor Swift deepfakes [4]. The poten-
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Figure 1. We show the real video frames from YouTube, and fake
video from SORA by OpenAl. The explicit knowledge, DIRE,
is calculated by the difference between the input original frame
and the reconstructed frame from the diffusion model. The recon-
structed frame for the SORA-generated video will be visually close
to the input original frame, yet the real video from YouTube can
not (e.g., the cat face distorted after reconstruction), which inspired
us to leverage the DIRE information for training.

tial threats underscore the importance of detecting video
generated by these generative models.

Recent advancements have developed detectors that
achieve remarkable accuracy in identifying images gener-
ated by diffusion-based models [13, 22]. The core method
first calculates the Diffusion Reconstruction Error (DIRE)
by measuring the difference between an input image and
its corresponding reconstructed version from the diffusion
model; then, a classifier is trained on the DIRE values to
distinguish the Al-generated images from human-created
images. Prior work [22] shows that these State-of-the-art de-
tectors have great generalizability, where the detector trained
with samples generated from one source of the generative
model can also detect samples from other sources. However,
we found that these state-of-the-art detectors are not robust
enough to detect diffusion-generated video under the same
setting due to the following reasons, (1) The detector can
easily overfit on the in-domain set when training with DIRE
values only, which can not generalize to the out-domain set.
(2) The SOTA diffusion-generated image detectors can not
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Figure 2. The flow of DIVID. In step 1, given a sequence of video
frames, we first generate the reconstructed version of every frame
by using the diffusion model. Then, we calculate the DIRE values
using the reconstructed frame and their corresponding input frame.
In step 2, the CNN+LSTM detector is trained based on sequences
of DIRE values and the original RGB frames.

capture the temporal information in multiple video frames.

(3) Existing video detection methods for deepfake are not de-

signed for high-quality diffusion-generated video with more

variance, which requires more explicit knowledge to detect.

To tackle the challenges, we propose a novel approach for
DlIffusion-generated VIdeo Detection, called DIVID. Our
method, DIVID, carefully investigates the sampling timestep
of the diffusion process to generate DIRE values upon mul-
tiple frames for real and fake video. We found the tradeoff
between the quality of video reconstruction and the proper
DIRE values for training the detector. While the sampling
step is small, the reconstruction of video frames from the
diffusion model can be noisy, and the DIRE values can be
large for both real and fake videos. Despite increasing the
sampling timestep to a large number, which can improve the
video quality after reconstruction from diffusion, it reduces
the gap of DIRE values between real and fake. Therefore, a
proper sampling timestep is critical for video detection.

We then propose using CNN + LSTM architectures to
capture different levels of abstraction features and temporal
dependencies in both original RGB frames and DIRE values,
as shown in Fig 2. Prior work [22] uses a pre-trained CNN
architecture to build the detector, yet it can learn only the
features of DIRE values on every single image. To incor-
porate the temporal features into the model, we change the
model architectures and do the two-phase training. We first
fine-tune the CNN on the original RGB frame and DIRE
values of video, then train the LSTM network based on the
feature extractor in the CNN.

Our main contributions are as follows.

* We propose DIffusion-generated VIdeo Detector (DIVID),
a new video detection method that can detect video gener-
ated from multiple sources of video generation tools.

* We have collected a video dataset, including in-domain
trainset / testset, and out-domain testsets. The in-domain
train/test sets are from Stable Video Diffusion (SVD)
model, and the out-domain is collected from Pika, Runway

Gen-2, and SORA. We will release our benchmark shortly.

* We propose a general training framework by incorporating
the temporal information meaningful explicit knowledge
in video clips. We observe a simple CNN + LSTM trained
with RGB frame + DIRE values can improve the general-
izability of detectors on out-domain testsets.

2. Related Works

o Diffusion-generated Video Diffusion-based video genera-
tion represents a leap forward from static image generation,
addressing the complexities of temporal coherence, motion
dynamics, and environment consistency. Tools like SORA
by OpenAl [6], Stable Video Diffusion [5], MidJourney [1],
RunwayML [3], Show-1 [23], Pika [2] and Deep Dream Gen-
erator [15] enable users to generate videos with impressive
visual and narrative quality. These tools illustrate the breadth
of development in Al-driven video content creation, showcas-
ing a range of capabilities from enhancing video quality to
generating entirely new content. Each offers unique features
tailored to specific creative or technical needs, reflecting the
rapid evolution and growing accessibility of video generation
technology.

e Generative Video Detection The success in generating
high-quality images has heightened concerns about security,
personal privacy, and digital integrity, emphasizing the need
for a robust detector to discern whether samples are from
generative models. Recently, Deepfake video, generated by
GAN-based models, can perform face manipulation with
high realism [11]. Agarwal et al. [11] point out the chal-
lenges of detecting deepfake video, where the traditional
DNN networks or audio-visual approach based on lipsync
inconsistency detection are not robust enough to detect Deep-
fake. Rossler et al. [18] introduced a face forgery detection
technique that begins by tracking and extracting facial in-
formation from the sample, followed by training a classifier
to detect forgeries. Marra et al. [14] developed multiple
CNN-based models for detecting fake images. David et
al., [9] proposed to use CNN + LSTM to do the deepfake
video detection. However, their approach did not account
for cross-model transferability and was found ineffective
for generalizing to diffusion-based images [7, 16]. Lorenz
et al. [12] modified the widely-used Local Intrinsic Dimen-
sionality (LID) to detect diffusion-based images. Based on
the observation that generated images vary less than real
images after reconstruction. DIRE [22] proposed to utilize
reconstructed error to detect diffusion-generated images and
was proved better than traditional RGB-based detectors. Se-
DID [13] extended it by ensembling step-wise noise error of
corresponding inverse and reverse stages. To facilitate dif-
fusion image detection, benchmarks at image level [22] and
fine-grained region level [21] were established for fair com-
parison. Despite the prior works, the robustness of detectors
on diffusion-generated video remains unexplored.



3. Method
3.1. Preliminaries

e Denoising Diffusion Probabilistic Models (DDPM) The
diffusion model is a novel approach for image generation
that was first proposed in [20] inspired by nonequilibrium
thermodynamics, strengthening the image quality during the
generation process. DDPM operates by gradually transform-
ing random noise into structured images over a series of
steps, simulating a reverse diffusion process.

Given an image x( sampled from Xs, DDPM relies on
learning the reverse of a diffusion process, where a data
point x is progressively noised until it becomes a Gaussian
noise through a fixed Markov Chain for 7" steps, and then
learning to denoise it back to the original image. Specifically,
for every timestep ¢ € [1, ..., T, they sample data sequence
[1,...,z7| by adding Gaussian noise with variance f; €
(0, 1) during the forward process, which is defined as:

q(z¢|zo) = Vawro + V1 — aye, (D

where € ~ N(0,1) is the noise sampeled from Gaussian
distribution, oy = 1 — S, and &; = II._, . The re-
verse process then generates a sequence of denoised image
[, 2] ..., z]] from timestep ¢ € [T, ...1]. For timestep ¢

in the reverse process, the denoised image can be defined as:
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where ¢y is a trainable noise predictor that generates a pre-
diction for the noise at the current timestep and removes the
noise. oy is the variance of noise. Ideally, the generated
sample 2 should be moved forward to the distribution of
the source domain trained for the diffusion model.

e Denoising Diffusion Implicit Models (DDIM) In
DDPM, the long stochastic operations can lead to gradi-
ent vanishing during the training and huge distortion of the
content information. Thus, to train the diffusion more effi-
ciently without content distortion, DDIM [20] modifies the
diffusion process by introducing a non-Markovian implicit
trajectory. The reverse process in DDIM can be defined as:

af =y (af —xf,) (3)

+14/1— a1 — oZeq(xf,t) + o€,

where z , is the predicted denoised image for z( condi-
tioned on x{ at the time step ¢ and is defined as:

g i — 1T —aeg(af,t)
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While o; = 0, the noise term ¢y is ignored, and the
sampling process becomes deterministic. When oy =
\/1 —a—1/(1— o‘zt)\/l — ay/ay—1, the generative pro-
cess becomes DDPM.

xfi)) +oe, (2

“4)

3.2. Diffusion-generated Video Detector (DIVID)

e Diffusion Reconstruction Error (DIRE) Previous stud-
ies indicate that image detectors designed for GAN or VAE
models experience performance drops when identifying im-
ages generated by diffusion processes. Moreover, training
a binary classifier solely on real and diffusion-generated
images does not ensure it will effectively recognize new,
unseen diffusion-generated images. In Wang et al., [22],
they proposed the DIRE, which can well capture the signal
of the diffusion-generated image. Their hypothesis posits
that images from diffusion models are sampled from the
diffusion process distribution, suggesting that reconstructed
diffusion-generated images should closely resemble each
other. For any image x( from any set X and a pre-trained
diffusion model, the DIRE is calculated by

DIRE(x0) = |vo — R(I(x0))| ®)

where I represents the inversion process and R represents
the reconstruction process. The output of DIRE is calculated
by the absolute difference between xg and its corresponding
reconstructed version. DIVID leverages the DIRE to detect
the diffusion-generated videos.

e Detector for Diffusion-generated Videos To build a
robust detector for detecting Al-generated videos, instead
of training a binary CNN classifier with video frames, we
propose a CNN+LSTM trained with RGB frames + DIRE
values. The DIRE values are extracted from an unconditional
diffusion model. To well learn the temporal features of RGB
frames+DIRE values on every time step, we first train a CNN
detector for extracting the frame features on single frames.
Then, the RGB frames and DIRE values will be leveraged to
train CNN + LSTM model jointly.

Assume we already extract the DIRE of the video frame
set from a video sample @, denoted as {q1, g2, ..., g7} and
T is the total time step of frame. The ¢ is the feature ex-
tractor of CNN model. The feature of DIRE set from ¢
is {¢(q1), ¢(q2), ..., ¢(qr)}. For a feature ¢(g;) of DIRE
frame ¢; on time step ¢ € [1,2, ..., T, the working of LSTM
in DIVID can be described as follows. The LSTM generated
hidden representation a® at every time step in the LSTM
cells for output prediction (Eq. 8), which inquires the input
feature frame ¢(q;) and the inherent information of hidden
representation a’~! from the previous step. The cell state
¢! in Eq. 7 memorizes the past cell state and helps retain
the information from the past for a’. f?, u, and o® are the
forgetting, updating, and output gate layers. We initially
generate a candidate cell state ¢™* using Eq. 6, where W¢
and W are the weight parameters.

™ = tanh(Wea' ™' + Wio(q)) (6)

Ct — ft . ct—l + ut . CNt (7)
a’ = o' - tanh(c") (8)



Azgti:::t)ll;re Evaluation Metrics
Acc. AP
RGB CNN 90.16 97.02
RGB CNN+LSTM  90.16 97.39
DIRE [22] CNN 92.74 97.46
DIVID/ DIRE only CNN+LSTM  93.68 97.66
DIVID/DIRE + RGB  CNN+LSTM  91.33 98.20

Table 1. Detection performance on the in-domain testset. DIVID
outperforms our baseline architectures regarding accuracy (Acc.)
and average precision (AP). RGB represents the original pixel
frame values from raw video.

Total

Model Out-domain A
vg.
Gen-2 Pika SORA
RGB CNN 65.42 78.04 60.05 67.84
RGB CNN+LSTM 67.76 84.11 60.80 70.89
DIRE [22] CNN 50.93 60.75 54.77 55.48

DIVID / DIRE only
DIVID / DIRE + RGB

CNN+LSTM 60.75 80.37 60.8 67.3
CNN+LSTM 66.82 86.92 61.01 71.58

Table 2. Detection performance on out-domain testsets. We com-
pare DIVID with three baselines and show the detection accuracies
on SORA [6], Pika [2], and Gen-2 [3].

By training the CNN+LSTM with DIRE+RGB frame fea-
tures, DIVID improves the detection accuracy of video from
both in-domain and out-domain.

4. Experiment

Experimental Setting e Dataset We contruct a dataset
for evaluating our method shown in Table 3 by using pub-
lic video generation tools, including Stable Video Diffusion
(SVD) [10], Pika [2], Gen-2 [3], SORA [6]. Our source
data are from ImageNet Video Visual Relation Detection
(VidVRD) [19], which contains 1k source videos. For fake
video generation with SVD, the process starts from randomly
cropping each source video into a 25-frame video clip. Then,
the first image frame will be sent to SVD to generate a cor-
responding 25-frame fake video clip. The video resolution
is 1025x576. « Model We use ADM [8], an unconditional
256 %256 diffusion model trained on ImageNet-1K [17],
as our reconstruction model to generate the DIRE repre-
sentation for every video frame. The CNN classifier is a
ResNet50 model with pre-trained weight on ImageNet-1K.
The LSTM follows a one-layer architecture with hidden size
2048, which can handle multiple types of representation
(e.g., DIRE, RGB values of the original frame) extracted
from the CNN feature extractor. e Baseline and Implemen-
tation Details DIVID is trained based on DIRE and original
RGB features extracted from video frames with a CNN +
LSTM model. We set the training batchsize as 128. In the
training of LSTM, we use a 32-consecutive sequence of 4
frames in each batch. e Evaluation Metrics We evaluate
the detection performance based on the prediction of every
frame and calculate accuracy and average precision.

We show the detection perfor-
The three

Experimental Results
mance for in-domain video set in Table 1.

Video Denoising Generated # of Clips
Source Condition Model (real/fake)
d In—‘ VidVRD [19] Image2Video  SVD-XT [10] 1k/1k
omain
Out- VidVRD (test) Image2Video Pika [2] 107/107
domain VidVRD (test) Image2Video Gen-2 [3] 107/107
YouTube/SORA [6] X X 207/191

Table 3. Composition of our video dataset. It includes real video
clips from VidVRD [19] and fake video clips generated from SVD,
Pika, and Gen-2. The fake video generation is conditioned on the
video frame from VidVRD. We also collected real videos from
YouTube and SORA [6] website as our 3rd out-domain test set
based on the same them (e.g., A cat on the bed).
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Figure 3. Analysis on diffusion steps and ddim step for DIVID. The
left-side subfigure shows the performance on different diffusion
steps from 1k to 10k, we freeze the ddim step as 20 for all. The
right-side subfigure shows the performance on different ddim steps
from 5 to 50, and the diffusion step is fixed as 10k for all.

baselines, including original trained under CNN and
CNN+LSTM, and DIRE [22] trained with CNN. Compared
with the three baselines, DIVID achieves 98.20% average
precision (AP) and has better detection accuracy, and out-
performs them by 0.94% to 3.52%. In Table 2, we show the
performance of DIVID on three out-domain testsets, includ-
ing SORA, Pika, and Gen-2. For every baseline, we show the
checkpoint results that have the best out-domain detection
accuracy. We observe that DIVID has competitive in-domain
results as baselines and also achieves better generalizability
on out-domain testset. DIVID improves the out-domain av-
erage accuracy by 0.69% to 16.1%. In Figure 3. we compare
different diffusion steps and DDIM steps for generating the
DIRE values in our DIVID.

5. Conclusion

We propose a general framework, DIVID for diffusion-
generated video detection. We have collected a new video
benchmark dataset, including fake videos generated from
SVD, SORA, Pika, and Gen-2. Unlike prior SOTA detectors
that only use the DIRE values to train the CNN detector,
DIVID leverages both RGB frames and DIRE values with a
simple CNN+LSTM, which can capture the temporal infor-
mation and extract explicit knowledge from multiple video
frames. The evaluation shows that DIVID achieves better
detection performance on in- and out- domain testsets by up
to 3.52 and 16.1 points. Our work highlights the importance
of increasing the generalizability of current SOTA detectors.
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