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Abstract

This work explores an empirical yet effective strategy for
compressing Stable Diffusion XL (SDXL) through a knowl-
edge distillation (KD) scheme. We first design a more ef-
ficient U-Net using layer-level pruning. Secondly, we ex-
plore how to effectively distill the generation capability of
SDXL into an efficient U-Net and eventually identify four
essential factors, the core of which is that self-attention is
the most crucial part. With our efficient U-Net and self-
attention-based KD strategy, we build our efficient text-to-
image models, called KOALA-1B &-700M, while reducing
the model size up to 54% and 69% of the SDXL model. In
particular, the KOALA-700M is over twice as fast as the
SDXL while still maintaining satisfactory generation qual-
ity. Moreover, unlike SDXL, our KOALA models can gen-
erate 1024px high-resolution images on consumer-grade
GPUs (e.g., 8GB VRAM). We hope that thanks to its bal-
anced speed-performance tradeoff, our KOALA models can
serve as a cost-effective alternative to SDXL.

1. Introduction

The emergence of the Stable diffusion models (SDMs) [20,
25] not only advance text-to-image synthesis but also rev-
olutionize derivative applications such as image editing [5,
35] and text-to-video generation [3]. Furthermore, a more
recent version of the SDMs, SDXL [20], enables to gener-
ate higher resolution images of 10242 with significantly
improved quality. However, its massive computation costs
and large model size require expensive hardware equipment
and thus incur huge costs.

To alleviate this computation burden, prior works at-
tempt to either reduce the required sampling steps (i.e.,
step-distillation) [19, 28] or compress the model archi-
tecture [15, 17] through the knowledge distillation (KD)

SDXL-Base
param: 2.5B

SDM-v2.0
param: 865M

Koala-700M (Ours)
param: 782M
latency: 1.42s

Figure 1. Qualiatative comparison with SDM-v2.0 and SDXL.
With the following settings: FP-16 precision, 10242 resolution,
and 25 denoising steps on NVIDIA 4090 GPU. The prompts are
described in Appendix B.

scheme [6, 9]. For the architectural compression, BK-
SDM [15] exploits KD to compress computationally heavy
U-Net [27] part in SDM-v1.4 [24]. BK-SDM builds a com-
pressed U-Net by simply removing some blocks and al-
lows the compressed U-Net to mimic the last features at
each stage of the original U-Net. However, the compression
method proposed by BK-SDM achieves a limited compres-
sion rate (33% in Tab. 1) when applied to the larger SDXL
than SDM-v1.4, and the strategy of feature distillation for
SDXL has not yet been fully explored.

In this work, our goal is to build more efficient U-Nets
by distilling the generation capability of significantly larger
U-Net in SDXL [20]. To this end, we first design two ef-
ficient U-Nets, KOALA-1B and KOALA-700M, using not
only block removal but also layer-wise pruning to reduce
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Figure 2. Overview of KnOwledge-DistillAtion in LAtent diffusion model based on SDXL and architecture of KOALA. We omit
skip connections for simplicity. We perform feature distillation in transformer blocks using self-attention layers.

the model size of the SDXL’s U-Net by up to 54% and
69% (vs. BK’s method: 33%). Furthermore, we investi-
gate how to effectively distill SDXL as a teacher model and
find four essential factors for feature-level knowledge dis-
tillation. The core of these findings is that self-attention
features are the most crucial for distillation.

With the proposed strategies, we train an efficient text-
to-image synthesis model on top of SDXL [20], called
KOALA, by only replacing SDXL’s U-Net with our ef-
ficient U-Net. KOALA is trained with 10242 resolution
on a smaller publicly available LAION-Aesthestics-V2-
6+ [30], which has only 8M text-image pairs. Our efficient
KOALA models consistently outperform BK-SDM [15]’s
KD methods. Furthermore, our smaller model, KOALA-
700M, shows better performance than widely used SDM-
v2.0 [25], while having a similar model size and infer-
ence speed. Lastly, to validate its practical impact, we
perform inference analysis on a variety size of consumer-
grade GPUs (e.g., memory of 8GB, 11GB, and 24GB), and
the results show that SDXL cannot be mounted on an 8GB
GPU, whereas our KOALA-700M can run on it while still
maintaining satisfactory image quality as shown in Fig. 1.
Our main contributions are as follows:

We design two efficient denoising U-Net with model

sizes (1.13B/782M) that are more than twice as compact

and faster than SDXL’s U-Net (2.56B).

. We perform a comprehensive analysis of the knowledge
distillation strategies for SDXL, finding four essential
factors for feature distillation.

1.

2. Approach

In this section, we first propose an efficient U-Net architec-
ture in Sec. 2.1. Then, we explore how to effectively distill
the knowledge from U-Net in SDXL [20] into the proposed
efficient U-Net in Sec. 2.2.

U-Net ‘ SDM-v2.0 SDXL-1.0 BK-SDXL KOALA-1B KOALA-700M
#Param. 865M 2,56TM 1,717"M 1,161M 782M
CKPT size | 3.46GB 10.3GB 6.8GB 4.4GB 3.0GB

Tx blocks | [1,1,1,1]  [0,2,10] [0,2, 10] [0,2, 6] [0,2, 5]
Mid block ' v v ' X
Latency 1.13s 3.13s 2.42s 1.60s 1.25s

Table 1. U-Net Comparison. Tx means Transformer. SDM-
v2.0 [25] uses 768 resolution, while SDXL and KOALA mod-
els use 10242 resolution. Latency is measured with FP16, and 25
denoising steps in NVIDIA 4090 GPU. CKPT means the trained
checkpoint file.

2.1. Efficient U-Net architecture

We devise a compressed U-Net that is more suitable for
SDXL by introducing layer-level pruning compared to
that of BK-SDM [15] which uses only block-level prun-
ing. Similar to BK-SDM, we first remove the residual-
transformer blocks pair at each stage. Specifically, in the
encoder part (DW—-1), each stage has two alternating pairs
of a residual block and transformer blocks. We remove the
last pair of residual-transformer blocks at each stage. In
the decoder part (UP-1i), we remove the intermediate pair
of residual-transformer blocks. Furthermore, focusing on
the fact that the majority of the parameters are concentrated
on the transformer blocks at the lowest features, as shown
in Fig. 2, we reduce the number of layers (i.e., depth) in
the transformer blocks from 10 to 5 or 6 at the lowest fea-
tures (i.e., DW—3,Mid and UP-1 in Fig. 2). As a result, we
design two types of compressed U-Net, KOALA-1B and
KOALA-700M. More details of the proposed U-Nets are
demonstrated in Tab. 1 and Fig. 2. Note that we remove Mid
block in KOALA-700M for additional model compression.
Our KOALA-1B model has 1.16B parameters, making it
twice as compact as SDXL (2.56B). Meanwhile, KOALA-
700M, with its 782M parameters, is comparable in size to
SDM-v2.0 (865M).



Distill type HPSv2 Distill loc. HPSv2 SA loc. HPSv2 Combination HPSv2
SD-loss 25.53 SD-loss 25.53 SA-bottom 26.74 Baseline (SA only) 26.74
SA 26.74 DW-2 25.32 SA-interleave  26.58 SA + LF at DW-1 & UP-3 26.98
CA 26.11 DW-3 25.57 SA-up 26.48 SA +Res at DW-1 & UP-3  26.94
Res 26.27 Mid 25.66 SA +LFall 26.83
FFN 26.48 UP-1 26.52 SA + Res all 26.80
LF (BK-SDM [15])  26.63 UP-2 26.05 SA+CA+Res+FFN+LF all ~ 26.39

(a) Distillation type. (b) Distill stage.

(c) SA location. (d) Combination.

Table 2. Analysis of feature level knowledge distillation of U-Net in SDXL [20]. SA, CA, and FFN denote self-attention, cross-attention,
and feed-forward net in the transformer block. Res is a convolutional residual block and LF denotes the last feature (same in BK [15]).

2.2. Exploring Knowledge distillation for SDXL

Now we explore how to effectively distill the knowledge of
U-Net in SDXL [20] into the proposed compact U-Net de-
scribed in Sec. 2.1. Prior work [15] that attempts to distill an
early series of stable diffusion (i.e., SDM-v1.4 [24]) directly
follows traditional knowledge distillation literature [6, 26].
The compressed student U-Net model Sy is jointly trained
to learn the target task and mimic the pre-trained U-Net of
SDM-v1.4 as a teacher network. Here, the target task is the
reverse denoising process [11], and we denote the corre-
sponding learning signal as L. Besides the task loss, the
compressed student model is trained to match the output of
the pre-trained U-Net at both output and feature levels. Loy
and Ly, represent the knowledge distillation (KD) loss at
the output- and feature-level, respectively. For designing
the feature-level KD-loss, BK-SDM [15] simply considers
only the last feature map of the teacher f4(-) and student
network f%(-) at each i stage as follows:

Lteakp = Hg,in Ez,e,c,t
)
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where t and ¢ denote given diffusion timestep and text em-
beddings as conditions. Thus, the feature distillation ap-
proach for text-to-image diffusion models has not been suf-
ficiently explored, leaving room for further investigation.
In this work, we extensively explore feature distillation
strategies to distill the knowledge from the U-Net of SDXL
effectively to our efficient U-Net, KOALA-1B. We start
from a baseline trained only by Ly, and add Lexp with-
out Loukp to validate the effect of feature distillation. More
training details are described in Sec. 3 and Appendix A.
From the experiments as shown in Tab. 2, We summarize
our insights into four important findings as follows.
F1. Which feature type is effective for distillation? BK-
SDM [15] demonstrated that distilling the last features (LF)
at U-Net stages benefits overall performance when applied
to shallow U-Net of early SDM-v1.4 [24]. However, with
the increasing complexity of U-Net and its stage, relying
solely on LF may not be sufficient to mimic the intricate
behavior of the teacher U-Net. Thus, we revisit which
features provide the richest guidance for effective knowl-
edge distillation. We focus on key intermediate features

from each stage: outputs from the self-attention (SA), cross-
attention (CA), and feedforward net (FFN) in the trans-
former block, as well as outputs from convolutional residual
block (Res) and LF. Tab. 2a summarizes the experimental
results. While all types of features help obtain higher per-
formance over the naive baseline with only the task loss,
distilling self-attention features achieves the most perfor-
mance gain. Considering the prior studies [16, 32, 34]
which suggest that SA plays a vital role in capturing seman-
tic affinities and the overall structure of images, the results
emphasize that such information is crucial for the distilla-
tion process.

F2. Which stage is most effective for distillation? In
addition, we ablate the significance of each self-attention
stage in the distillation process. Specifically, we adopt an
SA-based loss at a single stage alongside the task loss. As
shown in Tab. 2b, the results align with the above under-
standing: distilling self-attention knowledge within the de-
coder stages significantly enhances generation quality. In
comparison, the impact of self-attention solely within the
encoder stages is less pronounced. Consequently, we opt to
retain more SA layers within the decoder (see Fig. 2).

F3. Which SA’s location is effective in the trans-
former blocks? At the lowest feature level, the depth of
the transformer blocks is 6 for KOALA-1B, so we need
to decide which locations to distill from the 10 trans-
former blocks of teacher U-Net. We assume three cases
for each series of transformer blocks; (1) SA-bottom:
{fL 11 € {1,2,3,4,5}}, (2) sSA-interleave: {fL |
I € {1,3,5,7,9,10}}, and (3) sa-up: {fL | | €
{6,7,8,9,10}} where [ is the number of block. Tab. 2¢
shows that SA-bottom performs the best while SA-up
performs the worst. This result suggests that the features of
the early blocks are more significant for distillation. There-
fore, we adopt the SA-bott om strategy in all experiments.

F4. Which combination is the best? In SDXL’s U-Net,
as shown in Fig. 2, there are no transformer blocks at the
highest feature levels (e.g., DW—1&UP-3); consequently,
self-attention features cannot be distilled at this stage.
Thus, we try two options: the residual block (Res at
DW-1&UP-3) and the last feature (LF at DW-1&UP-3)
as BK-SDM [15]. To this end, we perform SA-based fea-
ture distillation at every stage except for DW—1 and UP-3,



Model Param.(Whole/U-Net) HPSv2 CompBench

SDM-v1.4 [24] 1.04B/860M 26.95 0.3150
SDM-v2.0 [25] 1.28B/865M 27.13 0.3672
DALL.E-2 [23] 6.5B 26.95 0.4268
SDXL-Base [20] 3.46B/2.6B 27.73 0.4441
BK-SDXL-700M [15] 1.68B/782M 27.26 0.3723
KOALA-700M 1.68B/782M 27.43 0.3791
BK-SDXL-1B [15] 2.06B/1.16B 27.12 0.3719
KOALA-1B 2.06B/1.16B 27.44 0.3912

Table 3. Visual aesthetics evaluation using HPSv2 [38] (Left)
and Image-text alignment evaluation using T2I-
CompBench [12] (Right).

where we use the above two options, respectively. In
addition, we try additional combinations: SA+LF all,
SA+Res all, and SA+CA+Res+FEFN+LF all where
all means all stages. Tab. 2d demonstrates that adding
more feature distillations to the SA-absent stage (e.g.,
DW-1&UP-3) consistently boots performance, and espe-
cially LF at DW1&UP3 shows the best. Interestingly,
both +LF all and +Res all are worse than the ones
at only DW-1&UP-3 and SA+CA+Res+FFN+LF all is
also not better, demonstrating that the SA features are not
complementary to the other features.

With these findings, we build a KnOwledge-distillAtion-
based LAtent diffusion model with our efficient U-Nets,
called KOALA. We train our KOALA models with the fol-
lowing objectives: Lsk + Loutkd + Ltearkp Where we apply
our findings to Leeykp-

3. Experimental results

Implementation details. We train the proposed efficient
U-Net in SDXL [20] for 200K iterations with a batch size
of 128 on publicly available LAION-Aesthetics V2 6+ [29—
31] for reproducibility. For a fair comparison to our coun-
terpart BK-SDM [15], we train our efficient U-Nets with
their distillation method under the same data setup (e.g.,
BK-SDXL-1B and -700M in Tab. 3). More training details
are described in Appendix A.

Evaluation metric. Recently, several works [2, 20, 38]
have claimed that FID [8] is not closely correlated with
visual fidelity. Therefore, instead of FID, we use Hu-
man Preference Score (HPSv2) [38] as a visual aesthet-
ics metric. For image-text alignment, we use the T2I-
compbench [12], which is a more comprehensive bench-
mark than CLIP score [7].

3.1. Main results

We compare our KOALA-700M/1B models with pop-
ular open-sourced Stable diffusion models series [20),
24, 25] and DALLE-2 [23] in Tab. 3. Our KOALA-
700M & KOALA-1B models based on SDXL [20] con-
sistently achieve both higher HPS and CompBench aver-
age scores than the BK [15] models (BK-SDXL-700M &
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Figure 3. Latency and memory usage comparison on a

consumer-grade GPU (11GB). OOM means Out-of-Memory. We
measure the inference time of SDM-v2.0 with 768px and the other
models with 1024px resolution, using 25 denoising steps.

1B) equipped with our efficient U-Net. Furthermore, our
KOALA-700M surpasses SDM-v2.0 [25] with a compa-
rable U-Net size, which is widely used in the commu-
nity. In addition, our KOALA models show higher HPS
but lower Compbench than DALLE-2 [23], which has a
much larger model size (6.5B). We speculate that the differ-
ent tendency between DALLE-2 and our model may stem
from data used for training. Because the LAION-Aesthetics
data we used focuses on higher aesthetic images than mul-
tiple objects with various attributes, our model is vulnera-
ble to texts with different attribute properties. Lastly, when
measuring latency and memory usage on a consumer-grade
GPU (e.g.,11GB of VRAM), as shown in Fig. 3, SDXL can-
not run with FP32 precision, whereas our KOALA-700M
operates twice as fast using both FP16 and FP32 precision,
showing speeds comparable to SDM-v2.0.

4. Conclusion and Future works

In this work, we propose KOALA, an efficient text-to-image
synthesis model, offering a compelling alternative between
SDM-v2.0 and SDXL in resource-limited environments. To
achieve this, we devise more compact U-Nets and explore
effective knowledge distillation strategies. With these con-
tributions, our KOALA-700M model substantially reduces
the model size (69%J) and the latency (60%.]) of SDXL
while exhibiting decent aesthetic generation quality.

For future works, as the recent step-distillation meth-
ods (e.g., SDXL-Turbo [28] and LCM [19]) are orthogonal
to our approach, it is expected that integrating our efficient
KOALA U-Net as a substitute for the SDXL backbone can
create synergistic effects, which leads to further speed-up.
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Appendix

A. Implementation details

A.1. Training

We base our framework on the officially released SDXL-Base-1.0 [1] and Diffusers library [36, 37]. We mainly replace computationally burdened
SDXL’s U-Net with our efficient U-Net. We keep the same two text encoders, OpenCLIP ViT-bigG [13] and CLIP ViT-L [22], used in SDXL. For VAE, we
use sdxl-vae-fpl6—-£fix [4], which enables us to use FP16 precision for VAE computation. We initialize the weights of our U-Net with the teacher’s
U-Net weights at the same block location. We freeze the text encoders, VAE, and the teacher U-Net of SDXL and only fine-tune our U-Net.

We train our KOALA models on LAION-Aesthetics V2 6+ [30] dataset (about 800M text-image pairs) for 200K iterations using four NVIDIA
A100 (80GB) GPUs with a resolution of 1024 x 1024, a discrete-time diffusion schedule [11], size- and crop-conditioning as in SDXL [20], a batch
size of 128, AdamW optimizer [18], a constant learning rate of 10~?, and FP16 precision. For a fair comparison to our counterpart BK-SDM [15], we train
our efficient U-Nets with their distillation method under the same data setup (e.g., BK-SDXL-1B and -700M in Tab. 3). For the ablation studies in Tab. 2,
we train all models for 30K iterations with a batch size of 32 on LAION-Aesthetics V2 6.5+ datasets for fast verification.

A.2. Inference

When generating samples, we also generate images with a resolution of 1024 x 1024, FP16-precision and sdx1-vae-fpl6-fix [4] for VAE-decoder.
Note that in the SDXL original paper [20], authors used DDIM sampler [33] to generate samples in the figures while the diffuser’s official SDXL code [21]
used Euler discrete scheduler [14] as the default scheduler. Therefore, we also use the Euler discrete scheduler for generating samples. With the Euler
discrete scheduler, we set the denoising step to 50 only for quantitative evaluation in Tab. 2 and Tab. 3, and set it to 25 for other qualitative results or latency
measurements. we set classifier-free guidance [10] to 7.5. We note that we generated samples in Fig. 1 on NVIDIA 4090 GPUs. For measuring latency and
memory usage in fair conditions, we construct the same software environments across machines with different GPUs. Specifically, we use Pytorch v2.0.1
and Diffusers v0.20.0.

A.3. Detailed formulation of training objectives

We detail the two objectives, the Ly,g and Loy, which are omitted in the main paper. First, the target task loss L,k to learn reverse denoising process [11]
is summarized as:

Lok =minEzy et cller — es, (20,1, o3, ()
)

where ¢ is the ground-truth sampled Gaussian noise at timestep ¢, ¢ is text embedding as a condition, and €g, (-) denotes the predicted noise from student
U-Net model, respectively. Second, the output-level knowledge distillation (KD) loss is formulated as:

Loukp = minE ¢ ¢ cller, (2,1, ¢) — s, (2, t, o3, ©)
2]

where e, (-) denotes the predicted noise from each U-Net in the teacher model.

B. Represenative prompts in Fig. 1

We use the following prompts for Fig. 1.
* “A portrait photo of a kangaroo in a sweater.”
* “A cinematic shot of a robot with colorful feathers.”
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