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In this supplementary material, we first illustrate the full algorithm (Sec. S1), followed by detailed descriptions of imple-
mentation of our main pipeline (Sec. S2), details of experiment setups (Sec. S3), and APAP-BENCH construction (Sec. S4).
We also provide experiment results from 2D mesh deformation, including qualitative and quantitative analysis and user study
(Sec. S5). Furthermore, we show the full list of qualitative results for 3D shape deformation (Sec. S6), as well as more com-
plex 3D shape deformations achieved by leveraging classical deformation techniques (Sec. S7). Finally, we report human
evaluation results on the plausibility of 3D deformations via user study (Sec. S8).

S1. APAP Algorithm
We present the full pseudo-code of the proposed algorithm in Alg. 1. As noted in the main paper, the proposed algorithm
consists of two stage where we first fulfill geometric, handle constraints imposed by users and refine the intermediate results
by distilling knowledge of visual plausibility from a pretrained text-to-image diffusion model.

S2. Implementation Details
We provide additional implementation details of Alg. 1. We used a modified version of the differentiable Poisson solver from
[2], denoted by g in Alg. 1, and nvdiffrast [11] when implementing the differentiable renderer R in our pipeline. We
render 2D/3D meshes at a resolution of 512× 512.

When editing 2D meshes, we optimize Lh for M = 300 iterations in the FirstStage and jointly optimize Lh and LSDS
for N = 700 iterations in the SecondStage. For experiments involving the optimization of 3D meshes with increased
geometric complexity, we use M = 300 and N = 1000 for each stage, respectively. We use ADAM [9] with a learning rate
γ = 1× 10−3 throughout the optimization. We use the Classifier-Free Guidance (CFG) scale of 100.0 and randomly sample
t ∈ [0.02, 0.98] when evaluating LSDS following DreamFusion [13].

We use a script from diffusers [5] to finetune Stable Diffusion [15] with LoRA [7]. We employ
stabilityai/stable-diffusion-2-1-base as our base model and augment its cross-attention layers in the U-
Net with rank decomposition matrices of rank 16. For the task of 2D mesh editing, we train the injected parameters for
60 iterations, utilizing a rendering of a mesh as a training image. In the 3D shape deformation, where renderings from 4
canonical viewpoints (front, back, left, and right) are available, we finetune the model for 200 iterations. In both cases, we
use the learning rate γ = 5× 10−4.

S3. Experiment Setup
Benchmark. To evaluate the plausibility of a mesh deformation we propose a novel benchmark APAP-BENCH of textured
3D and 2D triangular meshes spanning both human-made and organic objects annotated with handle vertices and their editing
directions, and anchor vertices. The set of 3D meshes, APAP-BENCH 3D, is constructed using meshes from ShapeNet [3]
and Genie [1]. The meshes are normalized to fit in a unit cube. Each mesh is manually annotated with editing instructions,
including a set of anchors, handles, and corresponding targets to simulate editing scenarios. APAP-BENCH offers another
subset called APAP-BENCH 2D, a collection of 80 textured, planar meshes of various objects, to facilitate quantitative
analysis and user study described later in this section. To create APAP-BENCH 2D, we first generate 2 images of real-world
objects for each of the 20 categories using Stable Diffusion-XL [12]. We then extract foreground masks from the generated
images using SAM [10] and sample pixels that lie on the boundary and interior. The sampled pixels are used for Delaunay
triangulation, constrained with the edges along the main contour of the masks, that produces 2D triangular meshes with
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Algorithm 1 As-Plausible-As-Possible

Parameters: g,R, ϕ, γ, M , N
Inputs:M0 = (V0,F0), Ka, Kh, Ta, Th, {Ci}ni=1

Output:M

procedure FIRSTSTAGE(J, Ka, Kh, Ta, Th, g)
for i = 1, 2, . . . ,M do

V∗← g (J,Ka,Ta) ▷ Solving Eqn. ??
J← J− γ∇JLh (V

∗,Kh,Th)
end for
return J

end procedure
procedure SECONDSTAGE(J, F0, Ka, Kh, Ta, Th, g, ϕ, {Ci})

for i = 1, 2, . . . , N do
V∗← g (J,Ka,Ta) ▷ Solving Eqn. ??
M∗← (V∗,F0)
C ∼ U({Ci}) ▷ Viewpoint Sampling
I ← R (M∗,C) ▷ Rendering
J← J− γ∇J (LSDS (ϕ, I) + Lh (V

∗,Kh,Th))
end for
return J

end procedure

ϕ← LORA(ϕ,M0,R, {Ci})
J← {J0,f |f ∈ F0}
J← FIRSTSTAGE(J, Ka, Kh, Ta, Th, g)
J← SECONDSTAGE(J, F0, Ka, Kh, Ta, Th, g, ϕ, {Ci})
V← g (J,Ka,Ta)
M← (V,F0)
returnM

texture. We assign two handle and anchor pairs to each mesh that imitate user instructions. For evaluation purposes, we
populate the reference set by sampling 1, 000 images for each object category using Stable Diffusion-XL.

S4. Details of APAP-BENCH

Image Generation. For evaluation purposes, we build APAP-BENCH 2D by generating 2 images of real-world objects for
each of the 20 categories using Stable Diffusion-XL [12]. We segment the foreground objects from the generated images and
run Delaunay triangulation to populate a collection of 2D meshes. When generating the images, we use the following template
prompt "a photo of [category name] in a white background" for all categories to facilitate foreground
object segmentation. Tab. S1 summarizes the list of categories. Note that the list includes both human-made and organic
objects that can be easily found in the daily environment to test the generalization capability of a deformation technique to
various object types.

Handle and Anchor Assignment. We manually assign two handle and anchor pairs to each mesh to imitate user instruc-
tions. Specifically, we choose vertices on the shape boundaries instead of internal vertices to induce deformations that alter
object silhouettes. For instance, users would try to drag the bottom of a backpack downward to enlarge the shape, instead of
dragging an interior point which may flip triangles, distorting the appearance. As an anchor, we use the vertex closest to the
center of mass of each mesh.

In experiments using APAP-BENCH 3D and APAP-BENCH 2D, we note that utilization of neighboring vertices of the
given handles and anchors during deformation helps retain smooth geometry near the handle. Therefore, we additionally
sample vertices near the handles and anchors that lie in the sphere of radius r = 0.01 and denote the extended sets of handles



Human-Made Organic

backpack flying bird
bike side view of cat
chair side view of dog

high-heeled shoes runway model
purse sitting bird

side view of car standing cheetah
sneakers standing dragon

table standing raccoon
airplane standing sheep

standing white duck
starfish

Table S1. Object categories of 2D meshes in APAP-BENCH 2D. APAP-BENCH 2D includes 2D triangle meshes depicting various
objects, including both human-made and organic objects.

and anchors region handles and region anchors, respectively. We use region anchors and a single handle for 3D experiments
and region anchors and region handles for 2D cases. Note that we use the same sets of handles and anchors when deforming
shapes with our baselines for fair comparisons.

Baselines. We compare our method (APAP) and As-Rigid-As-Possible (ARAP) [17] since it is one of the widely used
mesh deformation techniques that permits shape manipulation via direct vertex displacement. Throughout the experiments,
we use the implementation in libigl [8] with default parameters.

Evaluation Metrics. In 2D experiments, we conduct quantitative analysis based on k-NN GIQA score [6] as an evaluation
metric to assess the plausibility of instance-specific editing results. The metric quantifies the perceptual proximity between
the edited image and its k nearest neighbors in the reference set included in APAP-BENCH 2D. As our objective is to make
plausible variations of 2D meshes via deformation, an edited object should remain perceptually similar to other objects in the
same category. We use k = 12 throughout the experiments.

S5. 2D Mesh Editing

Qualitative Evaluation. We present qualitative results using the baselines and our method in Fig. S1. Each row shows two
different results obtained by editing an image based on a handle moved from the original position (red) along a direction
indicated by an arrow (gray) while fixing an anchor (green), similar to the 3D experiments discussed in the previous section.

As shown in Fig. S1, ARAP [17] enforces local rigidity and often results in implausible deformations. For example, it
does not account for the mechanics of the human body and introduces an unrealistic articulation of a human arm (the fourth
row). In addition, it twists the body of a sports car (the fifth row). Both of them originate from the lack of understanding
of the appearance of objects. APAP alleviates this issue by incorporating a visual prior into shape deformation producing a
bending near the elbow and preserving the smooth silhouette of the car, respectively.

While APAP is designed for meshes not images, we provide an additional qualitative comparison against DragDiffu-
sion [16], an image editing technique that operates in pixel space, to demonstrate the effectiveness of mesh-based parameteri-
zation in applications where identity preservation is crucial. As shown in Fig. S2, DragDiffusion [16] may corrupt the identity
of the instances depicted in input images during the encoding and decoding procedure. APAP, on the other hand, makes plau-
sible variations of the given objects while maintaining their originality, benefiting from an explicit mesh representation it is
grounded.

Quantitative Evaluation. Tab. S2 summarizes k-NN GIQA scores measured on the outputs from ARAP [17] (the first row)
and APAP (the sixth row) using APAP-BENCH 2D. As shown, APAP demonstrates superior performance over ARAP [17].
This again verifies the observations from qualitative evaluation where ARAP [17] introduces distortions that harm visual
plausibility. As in qualitative evaluation, we also report the k-NN GIQA score of DragDiffusion [16], degraded due to
artifacts caused during direct manipulation of latents.

User Study. We further conduct a user study for a more precise perceptual analysis. We follow Ritchie [14] and recruit
participants on Amazon Mechanical Turk (MTurk). Each participant is provided with a set of 20 randomly sampled images
of the source meshes paired with editing results of ARAP [17] and APAP.



Source ARAP Ours ARAP Ours Source ARAP Ours ARAP Ours

Figure S1. Qualitative results from 2D mesh deformation. 2D meshes are edited using ARAP [17] and the proposed method following
the edit instruction consisting of a handle (red), a target direction (gray), and an anchor (green). We showcase the rendered images of the
edited meshes, as well as a zoom-in view highlighting local details.

Source

Drag
Diffusion

Ours

Figure S2. Failure cases of DragDiffusion. DragDiffusion [16] can easily compromise the identity of edited instances as it manipulates
their latents without an explicit parameterization, the identity of instances can be broken during editing.

We instructed participants to select the most anticipated outcome when the displayed source image is edited by the
dragging operation visualized as an arrow with the question: "A visual designer wants to modify the
object by clicking on a red point and dragging it in the direction of the arrow.
Please choose a result that best satisfies the designer’s edit, while retaining
the characteristics and plausibility of the object." To check whether the response from a
participant is reliable we present 5 vigilance tests and collect 102 responses from the participants who passed the vigilance
test. After collecting responses from the participants, we computed the preference statistics collected from 102 user study
participants who passed the vigilance tests.

Fig. S3 (left) shows an example of a questionnaire provided to the participants. For vigilance tests, we included an editing



Methods k-NN GIQA (×10−2) ↑

ARAP [17] 4.753
DragDiffusion [16] 4.545

Ours (Lh Only) 4.797
Ours (ARAP Init.) 4.740
Ours (Poisson Init.) 4.316

Ours 4.887

Table S2. Quantitative analysis for 2D mesh editing. APAP outperforms its baselines in quantitative evaluation using k-NN GIQA [6].

Methods Preference (%) ↑

ARAP [17] 40.83
Ours 59.17

Table S3. User study preference for 2D image editing. In a user study targeting users on Amazon Mechanical Turk (MTurk), the results
produced using ours were preferred over the outputs from the baseline.

result from DragDiffusion [16] depicting an object irrelevant to the source image in each question. The participants were
asked to answer the same question. We illustrate an example questionnaire of a vigilance test in Fig. S3 (right).

Figure S3. Examples of questionnaires displayed during the user study (2D mesh editing). During the user study, we asked the
participants to evaluate 20 different result pairs from ARAP [17] and ours as shown on the left. To check whether a participant is focusing
on the user study, we included 5 items for the vigilance test. As shown on the right, a question for the vigilance test includes an image of
an object that is not related to the source image.

Tab. S3 shows a higher preference of the participants on our method over ARAP [17] implying that our method produces
more visually plausible deformations.
Ablation Study. Tab. S2 summarizes the impact of different initialization strategies in the first stage on k-NN GIQA
score. As reported in the third row of the table, optimizing Lh that aims to exclusively satisfy geometric constraints leads to
unnatural distortions.

We provide a qualitative comparison in Fig. S4. The presented results are obtained by (1) optimizing only Lh, (2) Lh and
LSDS without LoRA finetuning, (3) skipping the FirstStage, (4) using ARAP initialization, (5) using Poisson initializa-
tion, and (6) Ours. As shown in Fig. S4, optimizing only Lh (the second column) either distorts texture (the fifth row) or
inflates or shrinks other parts of the given shape (the seventh and twelfth row). This demonstrates the necessity of a visual
prior during deformation. Also, we observe the cases where skipping the FirstStage (the fourth column) does not lead
to intended deformation as our diffusion prior is reluctant to modify shapes from their original states (the first, second, and
fifth row). On the other hand, deformations initialized with the meshes produced by ARAP [17] (the fifth column) or Poisson
solve (the sixth column) suffer from distortions that could not be resolved by optimizing LSDS in the SecondStage.



Figure S4. Ablation study for 2D mesh editing. We examine the impact of each design choice on deformation outputs, including the
use of diffusion prior (the second column), LoRA finetuning (the third column), two-stage pipeline (the fourth column), and initialization
strategies during the FirstStage (the fifth and sixth column).

Source Lh Only No LoRA [7] SecondStage Only ARAP Init. Poisson Init. Ours



Figure S4. Ablation study for 2D mesh editing. We examine the impact of each design choice on deformation outputs, including the
use of diffusion prior (the second column), LoRA finetuning (the third column), two-stage pipeline (the fourth column), and initialization
strategies during the FirstStage (the fifth and sixth column).

Source Lh Only No LoRA [7] SecondStage Only ARAP Init. Poisson Init. Ours

While designing the algorithm illustrated in Alg. 1, we considered other options for FirstStage. Instead of optimizing
Lh to initially deform a shape, we used a shape produced by ARAP [17] or by solving a Poisson’s equation constrained
not only on anchor positions but also on handles at their target positions reached by following the given edit directions. We
report k-NN GIQA scores of the alternatives in the fourth and fifth row of Tab. S2, respectively. Both initialization strategies
degrade the plausibility of results due to large distortions introduced by either solely enforcing local rigidity or, finding least
square solutions without updating Jacobians. This poses a challenge to the diffusion prior, making it struggle to induce
meaningful update directions when provided with renderings with noticeable distortions, as shown in Fig. S4.

S6. Additional Qualitative Results for 3D Shape Deformation
Fig. S5 summarizes outputs of 3D shape deformation with additional results. Here, ARAP [17] only enforces local rigidity
and hence cannot produce smooth deformations intended by users. In the ninth row, ARAP [17] introduces a pointy end given
an editing instruction that drags the bottom of a doll downward. Ours, however, elongates the entire geometry smoothly,
producing a more visually plausible deformation. Another example displayed in the tenth row shows similar behaviors of



View 1 View 2 View 2 (Zoom In)
Source ARAP [17] Ours Source ARAP [17] Ours Source ARAP [17] Ours

Figure S5. Additional qualitative results from 3D shape deformation. We visualize the source shapes and their deformations made
using ARAP [17] and ours by following the instructions each of which specifies a handle (red), an edit direction denoted with an arrow
(gray), and an anchor (green). We showcase the rendered images captured from two different viewpoints, as well as one zoom-in view
highlighting local details.

ARAP [17] and ours, respectively. Here, unlike ARAP [17], the proposed method adjusts the overall proportion of the statue
as the handle located at the tail is translated, while preserving the smooth and round geometry near the handle.



S7. Complex 3D Deformation Examples
In addition to the ability to optimize Jacobian fields using diffusion priors offered by the linearity of Poisson solvers, we can
directly propagate local transforms, additionally defined at handle vertices, to Jacobians of neighboring faces by employing
geodesic distances as weights [4]. This allows for more dramatic deformations illustrated in Fig. S6, involving limb articu-
lations, large bending, and the use of multiple handles and anchors. As represented in the Panda (the seventh, eighth, ninth
columns) example, our framework can handle large pose variations, useful in downstream applications, such as animation.
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Figure S6. Examples of deforming source meshes using multiple handles and anchors. Best viewed in Zoom-in.

S8. User Study Results for 3D Shape Deformation

Figure S7. Examples of questionnaires displayed during the user study (3D shape deformation). During the user study, we asked the
participants to evaluate 20 different result pairs from ARAP [17] and ours as shown on the left. To check whether a participant is focusing
on the user study, we included 5 items for the vigilance test. As shown on the right, a vigilance test asks a participant to compare two
images, with one of them containing noticeable artifacts.

Assessing the visual plausibility of 3D deformations is particularly challenging due to the difficulty in populating large-
scale reference sets as we did for 2D meshes in Sec. S5. We further note that, unlike 3D generative models, computing
image-based metrics such as CLIP-R score is non-trivial since it is hard to describe handle-based deformations solely using
text prompts.

Therefore, we conduct a user study similar to the one presented in Sec. S5. We asked 47 user study participants on Amazon
Mechanical Turk (MTurk) to compare rendered images of meshes deformed using ARAP [17] and ours. Each participant is
provided with 20 image pairs and asked to select one image at each time given the question: "Which edited image is
more realistic and plausible? Choose one of the following images." An example of a ques-
tionnaire displayed to the participants is shown in Fig. S7 (left). We provide an example of vigilance tests, similar to the
user study for 2D mesh editing, in Fig. S7 (right). As summarized in Tab. S4, the deformation produced by our method is
preferred over the results from the baseline.

Methods Preference (%) ↑

ARAP [17] 41.7
Ours 58.3

Table S4. User study preference for 3D mesh deformation. In a user study targeting users on Amazon Mechanical Turk (MTurk), the
results produced using ours were preferred over the outputs from the baseline.
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