
Learning Compositional Language-based Object Detection with Diffusion-based
Synthetic Data

Kwanyong Park
ETRI

Kuniaki Saito
OMRON SINIC X Corporation

Donghyun Kim
Korea University

Abstract

Vision-language (VL) models often exhibit a limited un-
derstanding of complex expressions of visual objects (e.g.,
attributes, shapes, and their relations), given complex and
diverse language queries. While conventional methods try
to enhance VL models through the use of hard negative syn-
thetic text, their effectiveness remains restricted. In this pa-
per, we introduce a structured synthetic data generation ap-
proach to improve the compositional understanding of VL
models for language-based object detection. Specifically,
our framework generates densely paired positive and neg-
ative triplets (image, text descriptions, bounding boxes) in
both image and text domains. In addition, in order to train
VL models effectively, we propose a new compositional con-
trastive learning formulation that discovers semantics and
structures in complex descriptions from synthetic triplets.
As a result, VL models trained with our synthetic data gen-
eration exhibit a significant performance boost in the Om-
nilabel benchmark by up to +5AP and the D3 benchmark
by +6.9AP upon existing baselines.

1. Introduction

Recently, vision-language (VL) models have demonstrated
significant advancements in visual recognition by learn-
ing from large-scale weakly supervised image-text pair
datasets [10, 17]. While traditional recognition models [7,
13, 18, 21] are restricted to classifying or detecting pre-
defined classes, image-text paired data allow models to eas-
ily generalize to new concepts and domains with language
queries [6, 12].

Despite advancements, VL models [12, 17] continue to
face challenges in understanding complex language queries
and structured vision-language concepts, such as detailed
object attributes, shapes, textures, and their relationships [5,
23, 25]. Related to this, novel object detection benchmarks
like OmniLabel [20] and D3 [24] have been introduced,
tasking models with interpreting a broad range of complex

object descriptions to accurately detect target objects. In
such scenarios, VL models often overlook the complex and
free-form textual descriptions provided, leading to wrong
detection results. To address this issue, prior work [11] has
explored augmenting the text domain [5, 23, 25] by generat-
ing synthetic negative texts through swapping nouns or gen-
erating new image captions. Nonetheless, we observe that
merely enriching the text domain is insufficient for models
to learn dense relations between images and text.

To overcome these difficulties, we propose an innovative
framework to automatically generate the synthetic triplets
and utilize them to improve the language-based object de-
tector for better compositional understanding. The frame-
work consists of two steps: (1) Generating diverse and
dense triplets of (image, text descriptions, bounding boxes).
Instead of solely relying on difficult-to-obtain real-world
data [16], we propose to generate dense triplets with the
generative models (Sec. 2.1). We first use a large language
model [1, 2] to collect diverse and dense variations of vi-
sual entities (e.g., attributes, relations) in the text domain,
then translate these descriptions to the image domain with
the text-to-image diffusion models [3]. As a last piece,
we localize depicted visual entities as a bounding box. In
this step, we decompose the hard grounding problem into
multiple easy detection problems, and this simple yet ef-
fective change enables us to obtain an accurate bounding
box. (2) Effective learning from densely generated triplets
(Sec. 2.2). For an image of a specific visual entity, we first
contrast the dense variation of descriptions and the detec-
tor is trained to detect the object only for the corresponding
descriptions. Besides, we use structural information in the
textural description to identify the subject entity and use it
to suppress the predictions for the non-subject entities in
the descriptions. Both contrastive learning method largely
improves compositional understanding, resulting in signif-
icant performance gain in description-based object detec-
tion. Thanks to the generality of the proposed framework,
we show that our method significantly improves the perfor-
mance of the diverse prior detectors on the two challenging
benchmarks, OmniLabel [20] and D3 [24].
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Figure 1. Qualitative examples of synthetic triplets for each visual entity. Best viewed in zoom.

2. Method

We aim to improve the compositional understanding capa-
bilities of language-based object detectors. Instead of re-
lying on difficult-to-obtain triplets (image, object descrip-
tions, and bounding boxes), we harness the capabilities of
foundational models by generating these triplets. Our ap-
proach involves two main steps: (1) dense synthetic triplet
generation (Sec. 2.1) and (2) compositional contrastive
learning with dense synthetic triplets (Sec. 2.2).

2.1. Synthetic Triplet Generation in Image and Text
Domains

A traditional training data collection process for grounding
data [13, 16] is to collect images, and manually annotate ob-
ject bounding boxes with their text descriptions. However,
it would be prohibitively expensive and does not guarantee
to obtain hard negatives (i.e., dense triplets), which is cru-
cial to improve the compositionality of VL models [5, 11].
In order to obtain diverse and dense triplets, we adopt a
reversed approach which first generates text descriptions
and then collects corresponding images and localize the de-
picted objects.
Generating Diverse Object Descriptions. We initiate
the process by generating diverse text descriptions for a
wide variety of visual entities with large language models
(LLM) [2]. For instance, we prompt an LLM with instruc-
tions such as, ”Please list {ND} plausible visual object
descriptions for {class} that are around {NW} words in
length. Consider incorporating diverse visual attributes,
actions, and spatial or semantic relations with other ob-
jects in each description.” This approach allows us to effi-
ciently gather prior knowledge about specific visual entities
(i.e. {class}), encompassing their likely attributes, natu-
ral co-occurrences with other objects, and the relationships
between them.

The proposed LLM-based method for generating object
descriptions is notable for its scalability and controllabil-
ity. By adjusting parameters such as the pool size of vi-
sual entities (i.e., entity density), the number of descriptions
({ND}) per entity (i.e., description density), and the length
of each description (i.e., {NW}), we can easily manage
the diversity and volume of the generated descriptions. We
borrow the pool of visual entities from well-curated lists
of everyday object categories from popular object detection
datasets [14, 21].

Generating Densely Paired Images with Diffusion Mod-
els. Diffusion-based text-to-image generation models [8,
19, 22] have recently demonstrated their capability to
produce high-fidelity, photo-realistic images. To acquire
densely paired image-text data, we generate multiple im-
ages with the diffusion model [3] for each generated object
description. This approach allows us to explicitly introduce
diversity by specifying the objects in the descriptions. As
a byproduct, this strategy provides pairs of object descrip-
tions and images for training purposes.
Weak-to-Strong Pseudo Bounding Box Generation.
Even if we have a collection of densely paired generated
descriptions and images, accurate localization information
of the depicted objects is crucial for training detectors on
it. However, even recent pre-trained vision-language detec-
tors [4, 12] often struggle to identify visual entities based
on complex descriptions, due to their limited compositional
understanding capabilities.

To this end, we delve into strategies for achieving pre-
cise object localization using weak detectors (in terms of
compositional understanding), thereby facilitating the gen-
eration of rich supervision for training stronger detectors.
We term this as a weak-to-strong labeling method. An
overview of the process is depicted in Fig. 2-(a). We re-
formulate the complex phrase grounding problem into mul-
tiple tractable detection tasks with positive and short de-
scriptions. For each pair of generated images and object
descriptions, we first identify all noun phrases with an NLP
parser [9]. Each noun phrase is treated as an independent
description to detect the corresponding objects (i.e., task
decomposition). This ensures satisfactory precision and re-
call. Low-confidence predictions are filtered out based on
a predetermined threshold. The remaining predictions are
re-assigned to the original position within the description,
which results in a strong compositional label for the fol-
lowing step. Fig. 1 illustrates the qualitative examples of
synthetic triplets through the proposed generation pipeline.

2.2. Compositional Contrastive Learning for
Language-based Object Detection

A straightforward approach to utilize the generated triplets
(image, object descriptions, bounding boxes) is to use
as additional grounding data: learning the alignment be-
tween noun phrases and detected object regions. However,
our preliminary investigations reveal that models naively
trained with these triplets show marginal improvements. We
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Figure 2. (a) Overview of proposed weak-to-strong labeling. (b) Illustration of our compositional contrastive learning. Intra-class negatives from other
images of the same class and structural positives are augmented into the text query. We associate the sentence-level positive (i.e., the entire description
sentence) with the pseudo bounding box of the “an avocado” while differentiating the structure negative (i.e., the noun phrase “a cutting board”) from the
pseudo bounding box of the “a cutting board”. Best viewed in color.

identify two critical functionalities for compositional un-
derstanding: description-awareness and textural-structural-
awareness.
Learning Description-awareness with Dense Con-
trastive Learning. Traditional language-based detectors
often lack description awareness, indiscriminately detect-
ing entities, regardless of the provided descriptions. To ad-
dress this, we introduce supervisory signals that lead the
model to pay attention to the given descriptions. Specifi-
cally, we select intra-class negative captions from the de-
scription pool that belong to the same object category as
the image and augment the input query with the negatives
(e.g., “An avocado spread on a toasted bagel” in Fig. 2-(b)).
Then the model is trained to disregard the visual entities for
these negative captions. This approach demands that the
model discerns between identical or similar noun phrases
based solely on the context of entangled descriptions, sig-
nificantly enhancing description-based detection accuracy.
Notably, densely generated descriptions synergy well with
this description-awareness training.
Learning Textural-Structural-Awareness. Existing
language-based detectors often perform akin to a bags-of-
words [25], indiscriminatively detecting all visual entities
mentioned in the descriptions. To overcome this, we aim to
distinguish between subject and non-subject entities within
descriptions. We use textural relation [9] between noun
phrases to identify subject and non-subject entities (i.e., vi-
sual entities within the descriptions). Then, the detector is
instructed to ignore non-subject entities (e.g., “lying on a
cutting board” in Fig. 2-(b)) based on the description. We
term this concept as a structural negative. For the subject
noun entity, we ensure that the entire positive descriptions
are positively aligned (i.e. sentence-level positive). In addi-

tion, to prevent the model from taking shortcuts that over-
look later nouns, we introduce structural positives (e.g., “A
cutting board” in Fig. 2-(b)) by augmenting the model’s tex-
tual input with the noun phrase of the non-subject entity.
Then, the detector is trained to recognize the corresponding
object for the structural positive query. Through this strat-
egy, the model learns to differentiate identical noun phrases
based on their structural role within the language query
(subject vs. non-subject). This leads to significant improve-
ments in performance, particularly for complex queries in-
volving multiple visual entities.

3. Experiments
Training Details. By default, in synthetic data gener-
ation, we use the category pool from Object365 [21],
ChatGPT3.5-Turbo [2] for description generation and
Pixart [3] for image generation. We finetune pre-trained
detectors [4, 11, 12] using a combination of our generated
datasets and the Objects365 [21] object detection dataset.
Evaluation Benchmarks. We benchmark our proposed ap-
proach on the OmniLabel [20] and D3 [24] datasets. For
OmniLabel, the AP-c and AP-d quantify detection accuracy
for standard plain object categories and for free-form textual
descriptions, respectively. AP-d-S/M/L categorizes perfor-
mance metrics according to the length of the descriptions
(short, medium, and long). For more details, please refer to
the original papers.

3.1. Main Results

We evaluate the impact of the proposed learning framework
in Table 1. We first finetune two baseline models, GLIP [12]
and FIBER [4], and observe significant enhancements in



OmniLabel [20] D3 [24]
Model Backbone AP AP-c AP-d AP-dP AP-dS AP-dM AP-dL Full Pres Abs
RegionCLIP [26] ResNet-50 2.7 2.7 2.6 3.2 3.6 2.7 2.3 - - -
Detic [27] Swin-B 8.0 15.6 5.4 8.0 5.7 5.4 6.2 - - -
Grounding-DINO [15] Swin-B - - - - - - - 20.7 20.1 22.5
OFA-DOD [24] Swin-B - - - - - - - 21.6 23.7 15.4

GLIP-T [12] Swin-T 19.3 23.6 16.4 25.8 29.4 14.8 8.2 19.1 18.3 21.5
w/ Ours Swin-T 24.3 23.9 24.7 34.4 39.3 21.6 16.4 26.0 25.6 27.1
FIBER-B [4] Swin-B 25.7 30.3 22.3 34.8 38.6 19.5 12.4 22.7 21.5 26.0
w/ Ours Swin-B 30.5 31.6 29.5 40.3 43.7 26.3 21.3 26.5 26.0 27.7

Desco-GLIP [11] Swin-T 23.8 27.4 21.0 30.3 33.7 19.0 13.7 24.2 22.9 27.8
w/ Ours Swin-T 26.5 27.1 25.9 35.6 38.1 23.2 18.7 29.3 29.1 30.1
Desco-FIBER [11] Swin-B 29.3 31.6 27.3 37.7 42.8 24.4 18.6 28.1 27.2 30.5
w/ Ours Swin-B 32.0 33.1 30.9 40.4 45.2 27.7 22.9 30.8 31.0 30.4

Table 1. Performance comparison with state-of-the-art methods.

learning method AP AP-c AP-d AP-dp AP-dS AP-dM AP-dL

FIBER-B 25.7 30.3 22.3 34.8 38.6 19.5 12.4

Gen-as-grounding 26.8 31.3 23.4 34.4 40.8 19.5 11.8

(+) Des.-aware 29.0 30.9 27.4 36.6 44.2 24.0 14.9

(+) Text.-struct.-aware 30.5 31.6 29.5 40.3 43.7 26.3 21.3

Table 2. Ablation on compositional contrastive learning.

language-based object detection performance across both
datasets. This implies that the proposed learning frame-
work is generic over different detection architectures and
evaluation scenarios. Notably, the GLIP model’s perfor-
mance shows a substantial improvement, with an increase
of +5.0AP and +6.9AP on the overall metrics for the Om-
niLabel and D3 datasets, respectively. The enhancements
are particularly pronounced for long queries (i.e., AP-dL
in OmniLabel), where the performance of the GLIP model
doubles from 8.2 to 16.4.

We then explore the synergy between our proposals and
the prior language augmentation-based method (i.e., De-
sCo [11]). In this configuration, we apply their methods to
enrich the language queries within the detection dataset [21]
during training. As shown in the table, our proposal sur-
passes their models, DesCo-GLIP and DesCo-FIBER, by a
considerable margin across both datasets. This shows that
augmenting solely within the textual domain is insufficient.
Our compositional contrastive learning on densely gener-
ated triplets offers distinct and substantial improvements.

3.2. Ablation Study and Analysis

Effective learning signals with synthetic data. We vali-
date the impact of the proposed learning methods in Table 2.
We start with naive finetuning, treating densely generated
triplets similarly to conventional grounding data. (i.e., Gen-
as-grounding). The naive finetuning method only shows
the marginal improvements. Upon this, we explore the
impact of the proposed contrastive learning methods. By
contrasting dense descriptions from the same visual entity
(i.e., Des.-aware), the model faithfully learns the descrip-
tion awareness, leading to the significant improvements of
4.0AP in the description-based performance. We then ex-
plore the text structural-based contrastive learning, enforc-
ing the model to discriminate the same phrases according
to their structural role in the description. This greatly im-

proves description-based performance, especially the no-
table gain of 6.4AP for long queries. To sum up, all the
proposed learning methods show their unique effect and the
performance improvements of the final model over the base-
line are significant.
Scaling factors for the generated dataset. The scale of
a dataset is a crucial determinant of its effectiveness. We
investigate various design choices that influence the size of
the generated datasets, identifying the critical factors for ef-
ficient data scaling. We mainly explore two factors: density
of entity and description.

COCO O365
28.5 / 18.6 29.5 / 21.3

We first study the density of the covered entity by scaling
the category set from COCO [13] to Object365 [21]. We
generate dense synthetic triplets for each set and use them
to train a detector. As shown in AP-d/AP-dL above, the
description-based performance gradually improved as the
scale of the visual entity grew. This implies that it is crucial
to learn from dense triplets of diverse visual entities.

5 per ent. 10 per ent. 20 per ent.
27.5 / 17.4 28.4 / 18.4 29.5 / 21.3

We also explore the number of generated descriptions
for each visual entity. We vary the number from 5 to 20
and report the AP-d/AP-dL of the trained detector above.
The number of descriptions per entity greatly impacts over-
all scores, especially on the long query. This shows the im-
portance of dense triplets and highlights the potential of our
easy-to-scalable synthetic data generation framework.

4. Conclusion
In this paper, we propose to automatically generate syn-
thetic triplets of diverse and complex text descriptions, cor-
responding images, and reliable pseudo-bounding boxes.
With the synergy of the synthetic triplets and proposed
compositional contrastive learning, our generic framework
largely improves the compositional understanding of di-
verse language-based object detectors.
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