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Abstract
We introduce Posterior Distillation Sampling (PDS), a

novel optimization method for parametric image editing
based on diffusion models. Existing optimization-based
methods, which leverage the powerful 2D prior of diffusion
models to handle various parametric images, have mainly
focused on generation. Unlike generation, editing requires
a balance between conforming to the target attribute and
preserving the identity of the source content. Recent 2D im-
age editing methods have achieved this balance by leverag-
ing the stochastic latent encoded in the generative process
of diffusion models. To extend the editing capabilities of dif-
fusion models shown in pixel space to parameter space, we
reformulate the 2D image editing method into an optimiza-
tion form named PDS. PDS matches the stochastic latents of
the source and the target, enabling the sampling of targets
in diverse parameter spaces that align with a desired at-
tribute while maintaining the source’s identity. We demon-
strate that this optimization resembles running a generative
process with the target attribute, but aligning this process
with the trajectory of the source’s generative process. Ex-
tensive editing results in Neural Radiance Fields and Scal-
able Vector Graphics representations demonstrate that PDS
is capable of sampling targets to fulfill the aforementioned
balance across various parameter spaces.

1. Introduction

Diffusion models [10, 33–36] have recently led to rapid de-
velopment in text-conditioned generation and editing across
diverse domains, including 2D images [8, 12, 17, 37, 40],
3D objects [15, 16, 18, 23], and audio [5, 11, 43]. Among
them, in particular, 2D image diffusion models [4, 21,
27–29] have demonstrated their powerful generative prior
aided by Internet-scale image and text datasets [2, 30, 31].
Nonetheless, this rich 2D generative prior has been confined
to pixel space, limiting their broader applicability. A pio-
neer work overcoming this limitation, DreamFusion [24],
has introduced Score Distillation Sampling (SDS). It lever-
ages the generative prior of text-to-image diffusion mod-
els to synthesize 3D scenes represented by Neural Radiance
Fields (NeRFs) [22] from texts. Beyond NeRF represen-

tations [3, 19, 26, 32, 38, 39, 45], SDS has been widely
applied to various parameter spaces, where images are not
represented by pixels but specific parameterizations, such as
texture [1, 20], material [42] and Scalable Vector Graphics
(SVGs) [13, 14, 41].

While SDS [24] has achieved great advances in generat-
ing parametric images, editing is also an essential element
for full freedom in handling visual content. Editing differs
from generation in that it requires considerations of both the
target text and the original source content, thereby empha-
sizing two key aspects: (1) alignment with the target text
prompt and (2) preservation of the source content’s iden-
tity. To extend SDS, which lacks the latter aspect, Hertz et
al. [7] propose Delta Denoising Score (DDS). DDS re-
duces the noisy gradients inherent in SDS, leading to better-
maintaining background details and sharper editing outputs.
However, the optimization function of DDS still lacks an
explicit term for identity preservation.

To address the absence of preserving the source’s iden-
tity in SDS [24] and DDS [7], we turn our attention to a
recent 2D image editing method [12, 40] based on diffusion
models, known as stochastic diffusion inversion. Their pri-
mary objective is to compute the stochastic latent of an input
image within the generative process of diffusion models.
Once the stochastic latent of a source image is computed,
the source image can be edited by running a generative pro-
cess with new conditions, such as new target text prompts,
while feeding the source’s stochastic latent into the process.

To extend the editing capabilities of the stochastic dif-
fusion inversion method from pixel space to parameter
space, we reformulate this method into an optimization
form named Posterior Distillation Sampling (PDS). Unlike
SDS [24] and DDS [7], which match two noise variables,
PDS aims to match the stochastic latents of the source and
the optimized target.

Our extensive editing experiment results, including
NeRF editing (Section 4.1) and SVG editing (Section 4.2),
demonstrate the versatility of our method for parametric im-
age editing. In NeRF editing, we are the first to produce
large geometric changes or to add objects to arbitrary re-
gions without specifying local regions to be edited. Fig-



Input Scene Instruct-NeRF2NeRF Inversion2NeRF DDS PDS (Ours)

“...reading a book”

“...with hot air balloons”

Figure 1. A comparison of 3D scene editing between PDS and other baselines. Given input 3D scenes on the left, PDS, marked by
green boxes on the rightmost side, successfully performs complex editing, such as geometric changes and adding objects, according to the
input texts. On the other hand, the baselines either fail to change the input 3D scenes or produce results that greatly deviate from the input
scenes, losing their identity.

ure 1 shows these examples. Qualitative and quantitative
comparisons of SVG editing with other optimization meth-
ods, namely SDS [24] and DDS [7], have demonstrated that
PDS produces only the necessary changes to source SVGs,
effectively aligning them with the target prompts.

2. Preliminaries
Score Distillation Sampling (SDS) [24]. Score Distilla-
tion Sampling (SDS) [24] is proposed to generate paramet-
ric images by leveraging the 2D prior of pre-trained text-to-
image diffusion models. Given an input data x0 and a text
prompt y, the training objective function of diffusion mod-
els is to predict injected noise ϵ using a noise predictor ϵϕ:

L(x0) = Et∼U(0,1),ϵt

[
w(t)∥ϵϕ(xt, y, t)− ϵt∥22

]
, (1)

where w(t) is a weighting function and xt results from the
forward process of diffusion models:

xt :=
√
ᾱtx0 +

√
1− ᾱtϵt, ϵt ∼ N (0, I) (2)

with variance schedule variables ᾱt :=
∏t

s=1 αs. When the
input data x0 is generated by a differentiable image genera-
tor x0 = g(θ), parameterized by θ, SDS updates θ by back-
propagating the gradient of Equation 1 while omitting the

U-Net jacobian term ∂ϵϕ
∂xt

for computation efficiency:

∇θLSDS(x0 = g(θ)) = Et,ϵt

[
w(t)(ϵϕ(xt, y, t)− ϵt)

∂x0

∂θ

]
,

(3)

where we denote a noise prediction of diffusion models with
classifier-free guidance [9] by ϵϕ for simplicity. Through
this optimization process, SDS is capable of generating a
parametric image which conforms to the input text prompt
y.

Delta Denoising Score (DDS) [7]. Even though SDS has
been widely used for various parametric images, its opti-
mization is designed for generation, thus it does not reflect
one of the key aspects of editing: preserving the source
identity.

To extend SDS to editing, Hertz et al. [7] have proposed
Delta Denoising Score (DDS). Given source data xsrc and
its corresponding text prompt ysrc, the goal of DDS is to
synthesize new target data xtgt that is aligned with a tar-
get text prompt ytgt. In the SDS formula 3, DDS replaces
randomly sampled noise ϵ with a noise prediction given a



source data-text pair ϵϕ(xsrc
t , y

src, t):

∇θLDDS =

Et,ϵt

[
w(t)

(
ϵϕ(x

tgt
t , y

tgt, t)− ϵϕ(x
src
t , y

src, t)
) ∂xtgt

0

∂θ

]
,

(4)

where the same noise ϵt is shared for xsrc
t and xtgt

t :

ϵt ∼ N (0, I),

xsrc
t =

√
ᾱtx

src
0 +

√
1− ᾱtϵt,

xtgt
t =

√
ᾱtx

tgt
0 +

√
1− ᾱtϵt. (5)

While DDS extends SDS for editing tasks, it lacks an
explicit term in its optimization to preserve the identity of
the source. As a result, DDS is still prone to produce editing
results that significantly deviate from the source.

Stochastic Latent in Generative Process. To achieve
both conformity to the text and preservation of the source’s
identity, we turn our attention to the rich information en-
coded in the stochastic generative process of DDPM [10].
When βt := 1−αt are small, it is well-known that the pos-
terior of the forward process also follows a Gaussian distri-
bution according to a property of Gaussians. The forward
process posteriors are represented as:

q(xt−1|xt,x0) = N (µ(xt,x0), σtI), (6)

where σt :=
1−ᾱt−1

1−ᾱt
βt and the posterior mean µ is a linear

combination of x0 and xt: µ(xt,x0) := γtx0 + δtxt with
γt :=

√
ᾱt−1(1−αt)

1−ᾱt
and δt :=

√
αt(1−ᾱt−1)

1−ᾱt
.

Since x0 is unknown during a generative process, we ap-
proximate x0 with a one-step denoised estimate as follows:

x̃0(xt, y; ϵϕ) :=
1√
ᾱt

(xt −
√
1− ᾱtϵϕ(xt, y, t)). (7)

Consequently, one step of the generative process is repre-
sented as follows:

xt−1 = µϕ(xt, y; ϵϕ) + σtzt, zt ∼ N (0, I), (8)

where µϕ(xt, y; ϵϕ) = γtx̃0(xt, y; ϵϕ) + δtxt.
Using Equation 8, one can compute stochastic latent z̃t

that captures the structural details of x0. This involves com-
puting xt and xt−1 via the forward process and then rear-
ranging Equation 8 as follows:

z̃t(x0, y; ϵϕ) =
xt−1 − µϕ(xt, y; ϵϕ)

σt
. (9)

Several recent works [12, 40], known as DDPM inver-
sion, have utilized the stochastic latent for image editing

tasks. To edit an image using z̃t, they first pre-compute z̃t of
the source image across all t in the generative process. They
then run a new generative process with a new target prompt
while incorporating the pre-computed z̃t of the source into
the process instead of randomly sampled noise zt.

3. Posterior Distillation Sampling
Here, we introduce Posterior Distillation Sampling (PDS), a
novel optimization function designed for parametric image
editing.

Our objective is to synthesize xtgt
0 that is aligned with

ytgt while it retains the identity of xsrc
0 . To achieve this, we

employ the stochastic latent z̃t in our optimization. For sim-
plicity, we denote the stochastic latents of the source and the
target as follows:

z̃src
t := z̃t(x

src
0 , y

src; ϵϕ) (10)

z̃tgt
t := z̃t(x

tgt
0 , y

tgt; ϵϕ). (11)

Using the stochastic latents, we define a novel objective
function as follows:

Lz̃t
(xtgt

0 = g(θ)) := Et,ϵt−1,ϵt

[
∥z̃tgt

t − z̃src
t ∥22

]
, (12)

where, similar to Equation 5, z̃src
t and z̃tgt

t share the same
noises, denoted by ϵt−1 and ϵt, when computing their re-
spective xt−1 and xt.

Rather than matching noise variables as in SDS [24] and
DDS [7], we match the stochastic latents of the source and
the target via the optimization. By taking the gradient of Lz̃t

with respect to θ and ignoring the U-Net jacobian term as
previous works [7, 24, 38], one can obtain PDS as follows:

∇θLPDS := Et,ϵt,ϵt−1

[
w(t)(z̃tgt

t − z̃src
t )

∂xtgt
0

∂θ

]
. (13)

Expanding Equation 13, the following detailed formulation
is derived:

∇θLPDS :=

Et,ϵt,ϵt−1

[
(ψ(t)(xtgt

0 − xsrc
0 ) + χ(t)(ϵ̂tgt

t − ϵ̂src
t ))

∂xtgt
0

∂θ

]
,

(14)

where ϵ̂src
t := ϵϕ(x

src
t , y

src, t) and ϵ̂tgt
t := ϵϕ(x

tgt
t , y

tgt, t).
We leave a more detailed derivation to the supplementary
material.

4. Experiment Results
4.1. NeRF Editing

We evaluate our method against three baselines: Instruct-
NeRF2NeRF (IN2N) [6], DDS [7] and Inversion2NeRF



Table 1. A quantitative comparison of NeRF editing between
ours and other baselines. Ours outperforms the baselines quanti-
tatively. Bold indicates the best result for each column.

Methods CLIP [25] Score ↑ User Preference
Rate (%) ↑

IN2N [6] 0.2280 27.71
DDS [7] 0.2210 13.71
Inv2N 0.2232 9.24

PDS (Ours) 0.2477 49.33

Table 2. A quantitative comparison of SVG editing between
SDS [24], DDS [7] and PDS. Ours outperforms the others in
LPIPS [44] while achieving a CLIP [25] score that is on par with
the others. Bold indicates the best result for each column.

Methods CLIP [25] Score ↑ LPIPS [44] ↓ User Preference
Rate (%) ↑

SDS [24] 0.2606 0.4855 30.83
DDS [7] 0.2460 0.5982 20.24

PDS (Ours) 0.2504 0.3121 48.94

(Inv2N). Similar to IN2N [6], Inv2N is also based on It-
erative DU, which performs editing within 2D space, but
employs DDPM inversion [12] for 2D editing. Figure 1
presents the qualitative comparisons of NeRF editing. No-
tably, as depicted in row 1, our method is the only one that
makes large geometric changes in 3D scenes from the in-
put text, folding the man’s arms to create natural poses of
him reading a book. In contrast, Iterative-DU-based meth-
ods like IN2N [6] and Inv2N fail to produce the right edits
in 3D space. DDS [7] produces the outputs that completely
lose the identity of the input scenes, focusing solely on con-
forming to the input texts. Row 2 of Figure 1 shows the
editing scenario of adding objects in an outdoor scene with-
out specifying local regions, which also leads to large varia-
tions. Here, our method successfully adds the objects in the
input scene, maintaining their background details. On the
other hand, the baselines either fail to add the objects in 3D
space or produce outputs that significantly deviate from the
original scenes. We provide more qualitative results in the
supplementary material.

To further assess the perceptual quality of the editing re-
sults, we conduct a user study compared to the baselines. As
illustrated in Table 1, our editing results are most preferred
over the baselines in human evaluation by a large margin:
49.33% (Ours) vs. 27.71% (IN2N [6], the second best). See
the supplementary material for a more detailed user study
setup.

For a quantitative evaluation, we measure CLIP [25]
Score that measures the similarity between edited 2D ren-
derings and target text prompts in CLIP [25] space. As
shown in Table 1, ours outperforms the baselines quanti-
tatively.

Input SDS DDS PDS (Ours)

“A pumpkin” → “A banana”

“A cat as 3D rendered”→ “A dog as 3D rendered”

“A drawing of a cat”→ “A drawing of a dog”

Figure 2. A qualitative comparison of SVG editing using three
different optimization methods: SDS [24], DDS [7] and PDS.
PDS makes changes according to input text while most preserving
the structural semantics of the input SVGs.

4.2. SVG Editing

Qualitative results of SVG editing are shown in Figure 2. It
demonstrates that while all the methods effectively change
input SVGs according to the target text prompts, ours best
preserves the structural semantics of the input SVGs. This is
particularly evident in row 2 of Figure 2, where ours main-
tains the overall color pattern of the input SVG.

The trends from the qualitative results are mirrored in
our quantitative results. As seen in Table 2, ours signif-
icantly surpasses the others in LPIPS [44] by a large mar-
gin, which measures the fidelity to the input SVG, while our
CLIP score is on par with the others. This demonstrates that
our method introduces only minimal necessary changes to
meet the described attributes in the target text prompts.

We further provide a user study result of SVG editing in
Table 2. We use the same user study setup used in NeRF
editing (Section 4.1). Consistent with the qualitative and
quantitative results, ours are most preferred in human eval-
uation.

5. Conclusion
We propose Posterior Distillation Sampling (PDS), an op-
timization method for parametric image editing. PDS
matches the stochastic latents of the source and the target
to fulfill both conformity to the target text and preservation
of the source identity in parameter space. We demonstrate
the versatility of PDS in parametric image editing through
a comparative analysis between ours and other optimization
methods and extensive experiments across various parame-
ter spaces.
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