
ExtraNeRF: Visibility-Aware View Extrapolation of
Neural Radiance Fields with Diffusion Models

Meng-Li Shih1 Wei-Chiu Ma1,2 Lorenzo Boyice3 Aleksander Holynski3,4 Forrester Cole3

Brian Curless1,3 Janne Kontkanen3

1 University of Washington 2 Cornell University 3 Google Research 4 UC Berkeley

BaseNeRF (View 1) ExtraNeRF (View 1) BaseNeRF (View 2) ExtraNeRF (View 2)

Figure 1. BaseNeRF vs ExtraNeRF: We train a BaseNeRF model and our ExtraNeRF model on six input views and render the scene
from extrapolated viewpoints. Using our visibility-aware, diffusion-guided inpainting and enhancement modules, we are able to synthesize
sharp content in disoccluded regions, whereas the BaseNeRF suffers from blurry results (see the red boxes, green boxes, and the close-up
insets).

Abstract
We propose ExtraNeRF, a novel method for extrapolat-

ing the range of views handled by a Neural Radiance Field
(NeRF). Our main idea is to leverage NeRFs to model
scene-specific, fine-grained details, while capitalizing on
diffusion models to extrapolate beyond our observed data.
A key ingredient is to track visibility to determine what por-
tions of the scene have not been observed, and focus on re-
constructing those regions consistently with diffusion mod-
els. Our primary contributions include a visibility-aware
diffusion-based inpainting module that is fine-tuned on the
input imagery, yielding an initial NeRF with moderate qual-
ity (often blurry) inpainted regions, followed by a second
diffusion model trained on the input imagery to consistently
enhance, notably sharpen, the inpainted imagery from the
first pass. We demonstrate high-quality results, extrapolat-
ing beyond a small number of (typically six or fewer) input
views, effectively outpainting the NeRF as well as inpaint-
ing newly disoccluded regions inside the original viewing
volume. We compare with related work both quantitatively
and qualitatively and show significant gains over prior art.

1. Introduction
Reconstructing a scene from photographs is an important
and long-standing problem in computer vision. Recent
advances, following the introduction of Neural Radiance

Fields (NeRF) [6] have led to an explosion of progress.
Nevertheless, a limitation of NeRF in its base form is that it
is far better at interpolating than extrapolating, and requires
dense views for the interpolation. But what if you want to
take just a few views, a practical constraint in a live capture
setting, and extrapolate beyond them to enable a bit more
freedom in viewing the scene? While there has been signif-
icant progress in scene-level sparse NeRF reconstruction,
the progress on NeRF-based view extrapolation is primar-
ily limited to object-centric scenarios. Advances in genera-
tive techniques, particularly diffusion models, have demon-
strated unforeseen capabilities to synthesize previously un-
seen imagery. This presents an opportunity to expand the
operating range of NeRF more broadly to view extrapola-
tion.

Our core strategy employs neural radiance fields
(NeRF [6]) to capture scene-specific, fine-grained details
and utilizes 2D diffusion models [9] to extend the scene
beyond the limits of observed data. A straightforward fu-
sion of these technologies initially results in NeRF-rendered
images that appear blurry and detail-deficient. This is pri-
marily due to the discord between 2D diffusion priors when
applied to a 3D scene from varying perspectives, particu-
larly evident in scene-level view extrapolation where intri-
cate details (such as leaves and branches) are significantly
diminished.

To address these challenges, we develope a multi-stage

process (see Fig. 2) that includes: (1) employing a special-
ized visibility module to identify all 3D content which is
visible from the observed data; (2) utilizing a visibility-
aware inpainting module, which is tailored for each scene,
to imagine and add plausible 3D content into NeRF for view
extrapolation and ensure the content from observed data re-
mains unaltered; and (3) enriching view-consistent details
in hallucinated content using a carefully designed diffusion
enhancement model. Our qualitative and quantitative eval-
uation show significant gains over previous work.

2. Preliminaries
Neural radiance fields: A neural radiance field
(NeRF [6]) is an implicit scene representation
that can be rendered into a 2-d image and depth
map using C(r) =

∑Nr

i=1 Ti(1 − exp(−σiδi))ci.

and D(r) =
∑Nr

i=1 Ti(1 − exp(−σiδi))si.. It
can be supervised through target pixel colors via
Lrgb =

∑
r∥Ctarget(r) − C(r)∥22. Besides, it can be

supervised by Ldepth =
∑

r∥Dtarget(r) − D(r)∥22 if traget
depth is available.

Diffusion models: Diffusion models [5, 9–11] rely on the
learned denoising module Ψ(xt, t, l) that takes a noisy input
image xt and possible extra conditioning signals (e.g., text
prompts l, timestep t), and predicts the noise ϵ. It is trained
by Ldiffusion = Ex,t,ϵ∥ϵΨ(xt, t, l)− ϵ∥22.

3. Method
Given a sparse set of images of the scene, our goal is not
only to synthesize photo-realistic results between the input
views, but also generate high-quality view extrapolations
with inpainted disocclusions.

In this section, we first briefly review the basic building
blocks of our approach. Next, we explain each component
in more detail. Finally, we discuss how we fine-tune our
diffusion models and other design choices.

3.1. Extrapolating Neural Radiance Fields

We create a NeRF capable of view extrapolation in three
steps (see Fig. 2):
1. Training the BaseNeRF: We follow a standard process

to train a NeRF on a sparse set of input images.
2. Diffusion-guided inpainting: We iteratively optimize

NeRF with virtual views and the original inputs. Each
virtual view is rendered from the NeRF and then in-
painted using our diffusion model. Then the NeRF can
be supervised with this virtual image, backpropagating
the newly inpainted regions to the NeRF. Through this

iterative process, we construct a consistent neural radi-
ance field that extends beyond the original input images.

3. Diffusion guided enhancement: We find that the pre-
vious iterative optimization tends to introduce blur and
color drift in the inpainted regions. In the final stage, we
use a fine-tuned diffusion model to increase sharpness
and improve color consistency in these regions.
We now describe each component in more detail.

Training the BaseNeRF: Given a sparse set of images
{Ii}ni=1 and their associated camera poses {Πi}ni=1, we first
train a BaseNeRF (see Sec. 2). Due to the lack of dense
multi-view images for effective regularization of the under-
lying 3D space, we utilize the method proposed in [12] to
compute dense depth maps {Di}ni=1 for each input image
for geometric supervision. To further reduce “floater” arti-
facts (spuriously reconstructed bits of content in empty re-
gions of the volume), we incorporate distortion loss [1] and
hash decay loss [2] and apply gradient scaling [7] to regu-
larize the learning procedure.

Diffusion-guided Inpainting: Once we have the BaseN-
eRF, the next step is to augment it such that it can handle
extrapolated viewpoints.

To do this, we repeatedly optimize the NeRF over the set
of original views and virtual views that extend beyond the
original viewing domain. For each virtual view, we render
it using the NeRF and then use a diffusion inpainting model
Ψinpaint to predict the unobserved regions.

As our inpainting module Ψinpaint, we adopt the inpaint-
ing variant of latent diffusion from [9], which we further
fine-tune on a per-scene basis. To limit the inpainting to
the unobserved regions (e.g. areas where NeRF lacks super-
vision), our diffusion inpainter Ψinpaint takes three inputs:
noisy image, visibility mask, and masked clean image that
lacks data in areas to inpaint (see Fig. 3). The visibility
masks are computed by checking whether the 3D sample
points along the ray at each pixel have been observed in the
training images (see Sec. 3.2).

For each virtual view, we also inpaint the depth condi-
tioned on the inpainted color image using a depth comple-
tion network (see Sec. 3.2).

Once the image and depth for the virtual view are in-
painted, they are used to further supervise the NeRF through
Lrgb

inpaint and Ldepth respectively (see Fig. 2). Lrgb
inpaint is com-

puted as follows:

Lrgb
inapint =

∑
r

w(t)|Cinpaint(r)−C(r)|, (1)

where w(t) is a noise-level dependent weighting function,
Cinpaint is the inpainted colors and C is the rendered im-
age from NeRF. We chose to run small number of diffusion

NeRF Training View

Volume Rendering

Step 1. Training the BaseNeRF Step 2. Diffusion-guided inpainting

NeRFTraining View

Volume Rendering

Virtual View

NeRF BaseNeRF
(random initialization)

NeRF Inpainted NeRF
(initialization from step 1)

NeRF

 NeRF

Volume Rendering

Input Images Step 3. Diffusion-guided enhancement

 Diffusion
 enhancer

1. Repeat step 2. and replace
diffusion inpainter with

diffusion enhancer

Visibility Map

 Diffusion
 inpainter

Depth completion

 Frozen Model
& Stop Gradient

2. Replace with NeRF NeRF

Visibility Module

ExtraNeRF
(initialization from step 2)

Figure 2. Overview of our method: We start from n input images, their camera poses, and depth maps (predicted as described in Sec. 3).
In Step 1, we train a BaseNeRF by supervising with this input data. In Step 2, we add supervision from virtual views. We repeatedly
inpaint the areas that are unsupervised by the original input views by a diffusion model while continuing to supervise the NeRF with the
virtual views. In Step 3, we iterate in similar fashion, but instead of inpainting we apply another diffusion model specifically designed to
further improve the detail and color consistency in inpainted regions.

denoising steps on each virtual view at the time (e.g. 10),
but we repeat the whole process by iterating over the views
several times.

Note that while inpainting in multiple views separately
could lead to inconsistencies, our iterative approach does
converge, because at each virtual view the diffusion process
is bootstrapped via the noisy image that is re-estimated from
the continuously improving NeRF on every iteration. This
is similar to [8], although in our work we opted to run more
than one step of diffusion before we move to a new view.

Diffusion-guided enhancement: While the iterative in-
painting converges into a consistent result, we have ob-
served that some blurriness and color drift may still occur
in the NeRF after the inpainting stage.

To alleviate this, we utilize a diffusion-based enhance-
ment model, Ψenhance, which has the same architecture as
Ψinpaint but specifically trained for the enhancement.

Similar to inpainting, we use an iterative approach to up-
date our NeRF. In each training iteration we 1) render the
image and compute the visibility mask from the NeRF, 2)
create a triplet of input data from the rendered image and
visibility mask, and 3) leverage our Ψenhance model to gen-
erate an enhanced image from the triplet. In contrast to the
inpainting process, we do not mask out the pixels in the in-
tact rendered image (see Fig. 3). Instead, we want Ψenhance

to enhance detail in these areas. Once the enhanced image
is generated, we then complete the depth. Finally, we super-
vise the NeRF following steps similar to the inpainting stage
but replace Lrgb

inpaint with Lrgb
enhance. Lrgb

enhance is almost identical

to Lrgb
inpaint except that we replace Cinpaint with Cenhance (i.e.

Figure 3. The input triplet of diffusion model consists of noisy-
image, mask, and an guidance image. While masked pixels of
guidance images of Ψinpaint are erased, they are preserved as the
guidance for Ψenhance.

enhanced colors).

3.2. Implementation details

Visibility map: The visibility map indicates whether the
3D points corresponding to the pixels of a virtual view are
visible in the input images. They might be hidden if they
are outside the input view frustums or occluded by a closer
object.

It plays a critical role in our system as it helps us deter-
mine which areas are unobserved in the original images and
require inpainting. As indicated in Sec. 2, the accumulated
transmittance from NeRF encodes essential visibility infor-
mation. This enables us to estimate the visibility of any 3D
point w.r.t the input views.

To compute the visibility map for a single pixel of a vir-
tual view, we first construct a ray through that pixel. For
each sampled 3D point along this ray, we then compute the

Masked Depth Guidance Image Completed Depth

Figure 4. The depth completion model takes a masked depth along
with a guidance image as input and completes the depth in the
masked region using the guidance of the RGB image.

transmittance towards each training view (e.g. another ray
march). To aggregate the transmittance values across the
input views, we simply select the second largest value. This
is based on the rationale that the geometry of a 3D point is
only reliable if observed by at least two views (the minimum
for triangulation). If a 3D point is seen by only one training
view, its estimated depth might be unreliable. Finally, these
aggregated transmittance samples are aggregated together
to the visibility map pixel by volume rendering, similarly to
color values.

Depth completion module: We develop a depth comple-
tion module to complete the depth maps for virtual views
required by Ldepth (Fig. 4). The depth completion network
takes the inpainted RGB image, visibility mask, and masked
depth-map as input, and inpaints depth map in the masked
region. The model is based on the pretrained weights of
MiDaS-v3 [4] with two additional input channels for the in-
put mask and masked depth-map. The model is fine-tuned
with a self-supervised approach on the Places2 dataset [17]
(see Suppl. for details).

4. Experiments
4.1. Experimental setup

LLFF Datasets: We utilize the LLFF dataset to demon-
strate the effectiveness of our method. To assess perfor-
mance in the task of view extrapolation, 6 out of 30-40 im-
ages, whose viewpoints are closest to the center position,
are chosen as the training set, and 8 images, whose view-
points are farthest from the center position, are chosen as
the test set (see Tab. 1).

Metrics: For the FR metrics, we exclusively use
LPIPS[16], KID [3], and also include PSNR and SSIM [13]
for a comprehensive assessment.

Baselines: We compare our method with six related
baselines for which code is available: (1) Sparf [12], one of
the state-of-the-art (SOTA) methods for sparse view recon-
struction. (2) FreeNeRF [15], another SOTA in sparse view
reconstruction. (2) DiffusioNeRF [14], which employs a

Table 1. Quantitative comparison of view extrapolation.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ KID ↓ MUSIQ ↑

Sparf 20.38 0.650 0.324 0.0199 40.32
FreeNeRF 20.16 0.663 0.329 0.0203 39.51
DiffusioNeRF 19.94 0.683 0.296 0.0198 50.03
*SDS 20.56 0.654 0.338 0.0351 49.35
Ours 20.76 0.688 0.269 0.0154 54.13

patch-wise diffusion model to provide RGB and depth su-
pervision for a NeRF. (3) *SDS [8] loss, widely used in 3D
content generation. Here, we substitute the color supervi-
sion from the inpainted image with SDS loss.

4.2. LLFF

Image & Mask Sparf FreeNeRF

DiffusioNeRF *SDS Ours

Figure 5. Qualitative results of view extrapolation.

Comparison of view extrapolation: In Table 1, our
method surpasses related works across various metrics,
showcasing our approach’s superior ability to inpaint un-
seen regions in view extrapolation tasks. Furthermore,
Figure 5 presents a qualitative comparison, highlighting
the distinctions between our method and competing ap-
proaches.

While Sparf demonstrate proficiency in estimating ge-
ometry and appearance for regions captured by input view-
points, they fall short in generating meaningful content for
view extrapolation scenarios. DiffusioNeRF, sharing our
utilization of a diffusion prior to enhance NeRF quality, is
limited by its patch-based model’s narrow receptive field,
preventing the synthesis of coherent content. Our diffusion
model, in contrast, processes the entire image to generate
meaningful and consistent content. Using *SDS loss only
can produce reasonable content, it often lacks the complex-
ity of detail. Compared to these methods, our technique ex-
cels in creating believable content that is both stylistically
consistent and detailed.

References
[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5855–5864,
2021. 2

[2] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Zip-nerf: Anti-
aliased grid-based neural radiance fields. arXiv preprint
arXiv:2304.06706, 2023. 2

[3] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and
Arthur Gretton. Demystifying mmd gans. arXiv preprint
arXiv:1801.01401, 2018. 4

[4] Reiner Birkl, Diana Wofk, and Matthias Müller. Midas v3.
1–a model zoo for robust monocular relative depth estima-
tion. arXiv preprint arXiv:2307.14460, 2023. 4

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. NeurIPS, 2020. 2

[6] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2

[7] Julien Philip and Valentin Deschaintre. Floaters no more:
Radiance field gradient scaling for improved near-camera
training. 2023. 2

[8] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv
preprint arXiv:2209.14988, 2022. 3, 4

[9] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 1, 2

[10] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML, 2015.

[11] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. arXiv, 2020. 2

[12] Prune Truong, Marie-Julie Rakotosaona, Fabian Manhardt,
and Federico Tombari. Sparf: Neural radiance fields from
sparse and noisy poses. IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR, 2023. 2, 4

[13] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 4

[14] Jamie Wynn and Daniyar Turmukhambetov. Diffusionerf:
Regularizing neural radiance fields with denoising diffu-
sion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4180–
4189, 2023. 4

[15] Jiawei Yang, Marco Pavone, and Yue Wang. Freenerf: Im-
proving few-shot neural rendering with free frequency reg-

ularization. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2023. 4

[16] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 4

[17] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Antonio Tor-
ralba, and Aude Oliva. Places: An image database for
deep scene understanding. arXiv preprint arXiv:1610.02055,
2016. 4

	. Introduction
	. Preliminaries
	. Method
	. Extrapolating Neural Radiance Fields
	. Implementation details

	. Experiments
	. Experimental setup
	. LLFF

