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Supplementary Material

In this supplementary document we include:
• Pseudocode 1 the GenPrompt algorithm described in Sec-

tion 2.2 of the main paper.
• Additional implementation details.
• Ablation study and additional qualitative results.

5. Implementation details

Training procedure

To evaluate the effectiveness of the synthetic dataset, we
assess the performance of existing segmentation models
trained on it. As in [12, 14] we ensure a fair comparison
by applying the same training procedure used for real data.
Formally, given a segmentation model F , the predicted seg-
mentation mask Y for the generated image I is obtained
as:

Y = F(I). (11)

The loss L used to update parameters in model F is calcu-
lated via the cross-entropy loss function LCE:

L = LCE(Y, Imask). (12)

Hyperparameter setting

We set the threshold of certainty α to 0.8 for extracting
candidate prompts. The number of iteration N is set to 100 to
find the optimal point prompt set from the candidate set . For
each object of interest in the image, we select 3 point prompts
(K = 3). The other parameters used to generate the attention
map are kept consistent with those in [12]. We utilized the
text prompt provided in [12] to generate synthetic images
using Stable Diffusion version 2.1-base [13]. We evaluate
the model’s performance on the validation sets of the VOC
and COCO datasets. The training procedure is based on
the MMsegmentation framework [5]. We use the AdamW
optimizer with a learning rate of 1e − 4, weight decay of
1e− 4, and train for 20, 000 iterations with a batch size of
8. We follow the standard MMSegmentation framework
for the other model hyperparameters. We conducted the
training using a server with four Tesla V100 GPUs, each
with 32GB of memory, an Intel Xeon E5-2698 processor,
and 256GB of RAM. For synthetic image and segmentation
mask generation, we ran the process in parallel over eight
V100 GPUs, which took ten hours to generate 40, 000 data
samples.

6. Additional Results

6.1. Ablation study

For all experiments in the ablation study, we use the
DeepLabv3 model and evaluate on the VOC dataset, with
the same configuration as described in Section 3.1.

Table 2 shows the impact of varying point prompt quan-
tity on the final performance. As has been discussed in
Section 2.2, using a small number of point prompts lead to
the performance degradation. However, we observed that in-
creasing the number of points beyond a certain threshold did
not yield notable performance improvements. This aligns
with the findings of [6] regarding the impact of point prompt
numbers on segmentation performance. We selected three
point prompts to achieve a balance between performance
and computational cost.

Table 3 showcases the results of employing various point
prompt generation techniques. As detailed in Section 2.2
and Figure 3, straightforward strategies exhibit limitations
in producing high precise segmentation mask for the whole
object. On the other hand, our proposed GenPrompt method,
which generates point prompts with maximized diversity,
achieves the highest quality segmentation masks from the
given probability maps.

We explore the impact of generated image quantity on seg-
mentation model performance in Table 4. We observed there
was a positive but diminishing marginal effect of increasing
synthetic data quantity on performance. This suggests that
the approach may have reached a limitation, where addi-
tional data provides minimal benefit. This also aligns with
the findings of [12] regarding the effect of synthetic data
size.

The effect of threshold α to extract candidate points is
present in Table 5. Note that, unlike baseline methods that
apply the threshold directly to binarize the attention map, we
use the threshold only to extract the candidate point prompts.
The purpose of this is to filter out points with low certainty
(usually the point at the object boundary), to ensure the the
selected point prompts belonging to the target object. We
observe that the performance is not much sensitive to the
choice of α. However, if choose the threshold too high,
candidate prompts will not cover most part of object and will
tend to concentrate on local area. The value of alpha as 0.8
achieve the best performance of 65.1 mIOU.



Algorithm 1 Generating Point Prompts with Maximum Diversity.
Input:
- Number of object classes M
- Probability map P = {pmij}, where each pmij represents the certainty of pixel at location (i, j) belonging to object class m
Output:
- Point prompts set for M object classes S = {Sm}Mm=1

1 Initialize S as an empty set for all classes m ∈ 1, ...,M
2 for m = 1 to M do
3 foreach point (i, j) do
4 if m = argmaxη(p

η
ij) then p̂mij ← pmij // Obtain coarse probability map for class m;

5 else p̂mij ,← 0;
6 end
7 Define Cm as set

{
(i, j) | p̂mij > 0

}
and initialize Dmax as 0 // Construct the candidate set

8 for n = 1 to N do
9 Stmp ← Randomly select K points that have a certainty above α from Cm

10 Dtmp ← Compute harmonic mean of distances between all pairs of points in Stmp // Refer to Equation 10
11 if Dtmp > Dmax then Update Dmax with Dtmp and assign Stmp to Ssel ;
12 end
13 Assign set Ssel to Sm
14 end
15 return S

# point prompts mIoU (%)

2 52.3
3 65.1
4 64.8

Table 2. Impact of different number of point prompts.

Prompts selection mIoU (%)

Single point 38.8
Multiple points 43.6
Random 61.0
Maximum diversity 65.1

Table 3. Performance of various point prompts generation methods.

# images mIoU (%)

20k 64.0
30k 65.0
40k 65.1

Table 4. Impact of different number of generated images.

α mIoU (%)

0.7 64.8
0.8 65.1
0.9 64.6

Table 5. Analysis of α.

6.2. Additional qualitative results

We present additional qualitative results in Figures 5, 6
and 7. These examples showcase the superiority of our pro-
posed prompting technique over the thresholding baseline.

Figure 5. Additional qualitative results, refer Sec. 3.3 for details.



Figure 6. Additional qualitative results, refer Sec. 3.3 for details. Figure 7. Additional qualitative results, refer Sec. 3.3 for details.


