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Abstract

This paper presents a novel pipeline to generate high-
quality segmentation masks for synthetic datasets produced
by a text-to-image generative model. In contrast to previous
approaches that directly apply a threshold on the attention
map extracted during generation process, we leverage this
map to prompt a large vision model. We extract a set of can-
didate point prompts from the attention maps and then select
a subset that maximizes diversity within the candidate set.
These selected points prompt the vision model, yielding fine-
grained segmentation masks. To validate our method, we
trained segmentation models on synthetic datasets and eval-
uated them on real datasets, including PASCAL VOC and
MSCOCO. Both qualitative and quantitative results demon-
strate the superior quality of segmentation masks produced
by our method compared to other thresholding baseline ap-
proaches.

1. Introduction

The development of generative models like Stable Diffu-
sion (SD) has unlocked the potential of using synthetic data
to train Artificial Intelligence (AI) systems, offering advan-
tages in scalability and accessibility. While SD model can
effectively produce photorealistic dataset with great diversity,
it remain challenging to get high quality segmentation mask,
where we need the annotation at pixel level. Simply applying
a pre-trained segmentation model to synthetic images is not
a valid option, because the goal is to generate a synthetic
dataset across various domains, potentially beyond the seen
categories of the pre-trained model1.

One pioneering research is Diffumask [14], where they
demonstrated the potential of extracting text-guided cross-
attention information in SD model for localizing class-
specific regions within synthetic images. To convert the

1Synthetic data generation also holds promise for tackling tasks with
objectless regions of interest, like satellite imagery segmentation [2] or
partial object segmentation [10], as explored in [12].

Figure 1. Prior approaches applying a threshold on the attention
map yield coarse, low-quality segmentation masks. In contrast,
we suggests using the attention map to generate prompts for a
promptable vision model (e.g., SAM). To this end, we propose
the GenPrompt algorithm, which generates points (marked in red
circles) for prompting the segmentation model, resulting in high-
quality masks.

resulting cross-attention maps into usable annotation masks,
they employed AffinityNet [1] to estimate an adaptive thresh-
old for each class present in the synthetic image. Another
work, Dataset Diffusion [12] proposed to refine the cross-
attention map by multiplying it with a power of the self-
attention map. They then empirically select a fixed threshold
to transform the refined attention map into a segmentation
label mask. While Diffumask and Dataset Diffusion illus-
trate the feasibility of generating semantic masks through
attention maps, producing high-quality segmentation masks
remains challenging due to the difficulty in determining the
optimal threshold for each specific case.

To address this challenge, we propose a different strat-
egy of prompting a large vision model. Instead of applying
a threshold to the cross-attention map, we use this map to
generate point prompts for a promptable vision model. This
approach, requiring only a small number of high-certainty
prompt points, significantly improves segmentation perfor-
mance. Additionally, the promptable model can generate
segmentation masks for arbitrary image areas based on given
prompts, without relying on specific categories. This fulfills



the task’s requirements for domain-agnostic image genera-
tion. We specifically employ the Segment Anything Model
(SAM) [8], known as one of the most effective promptable
models for segmentation task.

The remaining challenge is to generate a suitable set
of point prompts for producing high-quality segmentation
masks. We explored various approaches and found that max-
imizing the distance between points is the most effective
strategy. Figure 1 illustrates an overview of our approach. In
contrast to the thresholding methods described in [12, 14],
we utilize the attention map to generate point prompts for
SAM. Specifically, we propose GenPrompt, an algorithm
that generates point prompts with maximum diversity. The
diversity score we use is the mean harmonic distance be-
tween points, which encourages the selected points to be far
apart and evenly distributed over the target area. To evaluate
the effectiveness of our proposed method, we train two deep
learning models, DeepLabV3 [3] and Mask2Former [4] on
the generated dataset to and evaluate them on the validation
sets of PASCAL VOC [7] and COCO [11]. Both quantita-
tive and qualitative results indicate the effectiveness of our
approach compared to the thresholding baselines.

2. Methodology
2.1. Attention map generation

The pipeline overview is illustrated in Figure 2. Follow-
ing the procedures described in [12, 14], we harness the SD
model to generate images and their attention maps (proba-
bility maps) from textual input. First, text encoder in SD
encodes the text prompt to embedding e ∈ Rℓ×de , where ℓ
represents the text length and and de denotes its dimension.
We use the same text prompt S̃ = [S;C] as in [12], where
S is an image caption and C = [c1; c2; ...; cM ] represents
M class objects in an image. For example, the prompt in
Figure 2 is: “A man walking with a dog; person, dog”. The
embedding e guides the denoising process over T step of the
SD. During these steps, the SD transform the initial latent
state zT = N (0, 1) into the final latent state z0 residing in
RH×W×d, where H , W and d represent size of z0. In each
step t, the transformation of zt to zt−1 occurs across L layers
of self- and cross-attention within the UNet framework. For
each layer ℓ and time step t, we extract the self-attention
map:

Aℓ,t
S = Softmax

(
QzK

⊤
z√

dℓ

)
∈ [0, 1]HW×HW , (1)

where Qz , Kz are query, key of zt obtained from linear trans-
formation, and dℓ is the feature length at layer ℓ. Intuitively,
the extracted self-attention maps illustrate the pairwise cor-
relations among each positions within the latent variable
zt. Similarly, the cross-attention maps represent how each

specific location in the image space correlates with each
word token of the text embedding. Because we focus on the
relationship between each image region and its class label,
rather than the entire sentence, we use the text prompt con-
taining only the class label names C. Note that this prompt
is solely used for the extraction of cross-attention map, with
the original text prompt S̃ for image generation remaining
unaltered. For example, the text used to extract the cross
attention map in Figure 2 is: [“person”, “dog”]. The re-
sulting cross-attention map at time step t of layer ℓ and is
expressed as:

Aℓ,t
C = Softmax

(
QzK

⊤
e√

dl

)
∈ [0, 1]HW×M . (2)

The aggregated self-attention and cross-attention maps are
derived by averaging all maps over layers and timesteps:

AS =
1

L · T

(L,T )∑
(ℓ=1,t=1)

Aℓ,t
S , AC =

1

L · T
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Aℓ,t
C .

(3)
Finally, we follow [12] to obtain the probability map P by
exponentiating the attention map AS to the power of r before
multiplying it by with AC :

P = (AS)
r ·AC ∈ [0, 1]HW×M . (4)

The probability map P can be equivalently presented as set
{pmij}, where i from 1 to W , j from 1 to H and m from 1 to
M . Each element pmij represents the confidence score that
the pixel at position (i, j) in the generated image belongs to
the class m. However, the probability map P is still coarse-
grained, so we propose to use it only for generating point
prompts in the next step.

2.2. GenPrompt: Generating Point Prompts with
Maximum Diversity

Objective of the GenPrompt Algorithm

Prompt selection strategy greatly effects on the segmenta-
tion quality, which is illustrated in Figure 3. Using a single
point with the highest certainty can lead to ambiguities for
the SAM model. Selecting multiple points with the highest
certainty does not improve much, as these points are likely
close to each other, making it difficult for SAM to segment
the entire object. Randomly selecting a set of points can
result in selecting points that are too close together or have
low certainty, which can damage the segmentation quality.
Based on these observations, we suggest two criteria for a
good set of point prompts. First, all points in the set should
have high certainty to ensure they belong precisely to the
target object. Second, these points should be sufficiently
far apart to evenly distribute across the entire object. Our
findings align with [6], who concluded that prompt points



Figure 2. Pipeline for the Synthetic Image and Segmentation
Mask Generation: In the first stage, we use the SD model to
generate a synthetic image and attention map based on a given text
prompt (Section 2.1). The attention map is then used in the second
stage for prompt generation. Here, we introduce an algorithm
to generate point prompts (marked in red circles) that maximize
diversity within the candidate set (Section 2.2). These points are
used to prompt the SAM model, producing the final segmentation
mask.

(a) Synthetic Image (b) Attention Map (c) Maximize diversity

(d) Single prompt (e) Multiple prompts (f) Random prompts

Figure 3. Comparing segmentation results of different strategies to
generate point prompts from an input attention map.

with maximum distance yield the best segmentation quality.
With this intuition, we formulate the point prompts genera-
tion problem as the Maximum Diversity Problem (MDP)[9],
aiming to select a subset of elements from a larger set to
maximize the diversity score among them. We define the di-
versity score as the harmonic mean of the distances between
points, encouraging even distribution over the object and
preventing points from being too close together. Formally,
let M represent the number of objects in the image, and P be
the certainty map derived from Equation 4. Since a pixel lo-
cation is exclusive to a single object, we obtain initial coarse
probability map for class m by executing argmax operation
along the class dimension of P :

p̂mij =

{
pmij if m = argmaxη(p

η
ij)

0 otherwise
. (5)

We define Cm as a set of candidate point (i, j) taken from P
such as for each point (i, j) ∈ Cm, the associated element
p̂mij > 0:

Cm =
{
(i, j) | p̂mij > 0 , and 1 ≤ i ≤W, 1 ≤ j ≤ H} .

(6)
For each category m, our objective is to find a subset Sm =
{(i1, j1) , (i2, j2) , . . . , (iK , jK)} containing K points se-
lected from Cm to maximize H(Sm) as the harmonic mean
of distance among the points in Sm. The optimization prob-
lem could be defined as:

max
Sm

H(Sm) =

(
1

Ω

K−1∑
a=1

K∑
b=a+1

1

d ((ia, ja) , (ib, jb))

)−1

,

(7)
subject to:

| Sm |= K and Sm ⊆ Cm.

In Equation 7, d ((ia, ja) , (ib, jb)) is the Euclidean distance
between points (ia, ja) and (ib, jb), and is given by:

d ((ia, ja) , (ib, jb)) =

√
(ia − ib)

2
+ (ja − jb)

2
, (8)

and Ω is defined as the total number of unique pairs in Sm,
which is equal to K(K−1)

2 .

Procedure of the GenPrompt Algorithm

The MDP is NP-hard, implying that there is no known
polynomial-time algorithm for its efficient solution [9]. How-
ever, an optimal solution is not necessary because a set
of high-certainty points reasonably far apart can already
yield high-quality segmentation results with the SAM model.
Therefore, we use a Random Sampling approach with un-
certainty awareness to find a satisfactory solution. Formally,
we firstly initialize the max diversity score Dmax = 0 and
the selected subset Ssel = ∅ then repeat the iteration N time.
For each iteration n, where n = 1, 2, ..N , we sample K
high-certainty elements to form the subset Stmp from the
candidate prompt points Cm:

Stmp = {(ik, jk)}Kk=1 ⊆ {(ie, je) ∈ C
m | p̂ieje > α} , (9)

where α is a threshold certainty to guarantee the selected
point belong to specific target object. Then, the diversity
score is calculate using function H(.) defined in Equation 7:

Dtmp = H(Stmp). (10)

If Dtmp exceeds the previous iteration’s Dmax , we update
Dmax = Dtmp and Ssel = Stmp, accordingly. This iterative
process continues until reaching the maximum iteration N .
Once the Ssel with the highest diversity score is obtained, it
is assigned to Sm as the set of augmented point prompts for
object m. This procedure is repeated for all M objects in the



Training set Model VOC
(mIOU)

COCO
(mIOU)

Real Data
DeepLabV3, R50 77.4 48.9
DeepLabV3, R101 79.9 54.9
Mask2Former, R50 77.3 57.8

DiffuMask [14] Mask2Former, R50 57.4 -

Dataset
Diffusion [12]

DeepLabV3, R50 61.6 32.4
DeepLabV3, R101 64.8 34.2
Mask2Former, R50 60.2 31.0

DeepLabV3, R50 65.1 35.2
DeepLabV3, R101 68.3 36.1GenPrompt
Mask2Former, R50 64.0 33.8

Table 1. Semantic segmentation performance of DeepLabV3 and
Mask2Former models trained on different dataset.

image to derive the final set of point prompts S (please refer
to the pseudocode 1 in the Supplementary Material). Finally,
the set of point prompts S, along with the originally gener-
ated image I , are used as inputs to generate the segmentation
mask Imask using the SAM.

3. Experiments

3.1. Experimental setup

Baselines: We compare against two recent works:
Dataset Diffusion [12] and DiffuMask [14].

Model and dataset: Following [12, 14], we evaluate the
generated dataset’s quality by training standard segmentation
models, DeepLabv3 and Mask2Former on 40k images for
VOC dataset [7] and 80k images for COCO dataset [11].

3.2. Quantitative results

Table 1 compares the semantic segmentation performance
of the DeepLabV3 and Mask2Former models when trained
on real datasets and synthetic datasets generated through
various methods. The GenPrompt approach, which lever-
ages prompting techniques, clearly outperform thresholding
approaches, with gains of 6.6 mIOU over DiffuMask and
3.8 mIOU over Dataset Diffusion on the VOC dataset. Al-
though GenPrompt demonstrates encouraging capabilities,
a substantial performance gap of over 10 mIOU remains
between our synthetic datasets and real datasets. This gap is
partly attributed to the limitations of the SD model for gen-
erating complex scenes from text prompts, as discussed in
[12]. Additionally, the efficacy of our approach relies on the
precision of initial attention maps to enable effective prompt
selection. Without sufficiently precise attention maps, our
approach may struggle to achieve high-quality annotations.

3.3. Qualitative results

Figure 4 displays qualitative results, comparing our
method to the baseline Dataset Diffusion [12]. Object masks
are color-coded to match the object names in the caption.

(a) Successful Cases. (b) Failure Cases.

Figure 4. Qualitative analysis of GenPrompt algorithm: Fig-
ure (a) shows successful cases. With sufficiently accurate atten-
tion maps, our method could produce fine-grained segmentation
annotation (Row 1). Our approach also effectively handles chal-
lenging scenarios from the baseline method [12], such as closely
intertwined objects (Row 2) or small objects (Row 3). Figure (b)
analyzes failure cases, where poor-quality attention maps can result
in selecting incorrect prompt points, decreasing segmentation mask
quality (Row 1, 2). A notable error occurs in Row 3, where the TV
and background are misclassified, leading to an erroneous segmen-
tation mask despite the potential for fine-grained segmentation.

Figure 4a presents some successful cases. As shown,
our method yields segmentation masks with significantly
higher precision compared to baseline outputs. GenPrompt
reaches optimal capability in cases where the initial probabil-
ity maps can reasonably approximate visual characteristics
of the intended objects.

We also demonstrate limitations of our method in Figure
4b. When the attention map fails to provide an accurate can-
didate set, our method may not perform optimally, leading to
incorrect data annotations. This impacts the training of the
segmentation model, explaining why although our method
can produce more precise segmentation masks in many cases,
the gain in quantitative results is reasonable and still exits a
notable gap compared to training on real data.

4. Conclusion

In this work, we introduce GenPrompt, an algorithm that
utilizes the extracted attention map to generate prompts for
synthetic dataset generation in segmentation tasks. By us-
ing prompting technique, our work can yields substantially
more accurate mask annotations compared to the threshold-
ing baselines. This enhanced performance is accomplished
without compromising the critical requirement of generating
images in diverse domains. We hope our proposed frame-
work, supported by detailed analysis, will facilitate further
exploration in this promising research direction.
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