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Figure 1. We present a diffusion-based vision generalist for dense vision tasks. Given an input image, the model performs the corresponding
task following the text instruction. We showcase the effectiveness of our model on depth estimation, semantic segmentation, panoptic
segmentation, and three types of image restoration tasks. The images are the actual output of our model.

Abstract

Building generalized models that can solve many com-
puter vision tasks simultaneously is an intriguing direc-
tion. Recent works have shown image itself can be used
as a natural interface for general-purpose visual percep-
tion and demonstrated inspiring results. In this paper, we
explore diffusion-based vision generalists, where we unify
different types of dense prediction tasks as conditional im-
age generation and re-purpose pre-trained diffusion models
for it. However, directly applying off-the-shelf latent diffu-
sion models leads to a quantization issue. Thus, we pro-
pose to perform diffusion in pixel space and provide a recipe
for finetuning pre-trained text-to-image diffusion models for
dense vision tasks. In experiments, we evaluate our method
on four different types of tasks and show competitive per-
formance to the other vision generalists.

1. Introduction

The field of artificial intelligence has made significant
progress in building generalized model frameworks. In
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particular, autoregressive transformers [27] have become a
prominent unified approach in Natural Language Process-
ing (NLP), effectively addressing a wide range of tasks with
a singular model architecture [10, 19, 21, 25]. However,
in computer vision (CV), building a unified framework re-
mains challenging due to the inherent diversity of the tasks
and output formats. Consequently, state-of-the-art com-
puter vision models still have many complex task-specific
designs [3, 8, 9, 15, 30], making it difficult for feature shar-
ing across tasks and, thus, limiting knowledge transfer.

The stark contrast between NLP and CV has given rise to
a growing interest in developing unified approaches for vi-
sion tasks [6, 7, 18, 28, 29, 34]. Recently, [28, 29] have
shown image itself can be used as a robust interface for
unifying different vision tasks and demonstrated good per-
formance. In this paper, we propose a multi-task diffusion
generalist for dense vision tasks by reformulating the dense
prediction tasks as conditional image generation, and re-
purpose pre-trained latent diffusion models for it. Fig. 1
visualizes the output of our model on semantic segmenta-
tion, panoptic segmentation, depth estimation, and image
restoration. Based on text prompts, our model can per-
form different tasks with one set of parameters. However,
directly finetuning the pre-trained latent diffusion models
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Figure 2. The training pipeline of the diffusion-based vision generalist consists of two parts: Left: Redefining the output space of different
vision tasks as RGB images so that they can be unified under a conditional image generation framework. Right: We finetune a pre-trained
diffusion model on the reformatted data from the first step. Diffusion is performed in the pixel space to mitigate the quantization error of
the latent diffusion (see Table 3). The image and text conditionings are fed into the model via the corresponding encoders, where only the
image encoder is tuned during the training.

(e.g. Stable Diffusion [22]) leads to quantization errors for
segmentation tasks (see Table 3). To this end, we propose
to do pixel-space diffusion which effectively improves the
generation quality and does not suffer from quantization er-
rors. Moreover, our exploration into training diffusion mod-
els as vision generalists reveals a list of interesting findings
as follows:
• Diffusion-based generalists show superior performance

over the non-diffusion-based generalists on tasks involv-
ing semantics or global understanding of the scene.

• We find conditioning on the image feature extracted from
powerful pre-trained image encoders results in better per-
formance than directly conditioning on the raw image.

• Pixel diffusion is better than latent diffusion as it does not
have the quantization issue while upsampling.

• We observe that text-to-image generation pre-training sta-
bilizes the training and leads to better performance.
In experiments, we demonstrate the model’s versatility

across six different dense prediction tasks on depth esti-
mation, semantic segmentation, panoptic segmentation, im-
age denoising, image draining, and light enhancement. Our
method achieves competitive performance to the current
state-of-the-art in many settings.

2. Related Work
Efforts have been made to unify various vision tasks with
a single model, resulting in several vision generalists [6,
7, 18, 28, 29]. Inspired by the success of sequence-to-
sequence modeling in Natural Language Processing (NLP),
Pix2Seq [6] casts the output of object detection as se-
quences of discrete tokens and models them through next
token prediction. The idea was further developed in
Pix2SeqV2 [7] and Unified-IO [18], where dense prediction
tasks such as segmentation, depth map, and image restora-
tion are also unified either using features from a vector
quantization variational auto-encoder (VQ-VAE) [26] or the
coordinates of object polygons [4]. Painter [28] and Seg-
GPT [29], on the other hand, reformulate vision tasks as an

image inpainting problem, and perform in-context learning
following [2]. Unlike the previous work, our method unifies
different vision tasks under a conditional image generation
framework and introduces a diffusion-based vision general-
ist for it.

3. Toward a Diffusion-Based Generalist
3.1. Unification with Conditional Image Generation

As the output of most vision tasks can be always visualized
as images, we redefine the output space of different vision
tasks as RGB images and unify them as conditional image
generation to tackle the inherent difference of output for-
mats of different vision tasks. Given a input image x and
the corresponding ground-truth y, we first transform y into
RGB images and then pair it with a task descriptor in text.
By doing so, training sets of different tasks are combined
into a holistic training set. And training the model jointly
on it enables the knowledge transfer between tasks. At test
time, given a new image, the model can perform different
tasks following the text instructions (examples in Fig. 1).

In this paper, we consider four types of dense prediction
tasks: depth estimation, semantic segmentation, panoptic
segmentation, and image restoration.
Depth estimation outputs real number depth value for each
pixel on x. Given the minimum and the maximum values,
we map them into [0, 255] linearly and discretize them into
integers, which is then repeated and stacked along the chan-
nel to form the ground-truth RGB label.
Semantic segmentation predicts a class label for each
pixel. We use a pre-defined injective class-to-color map-
ping to transform the segmentation mask into RGB im-
ages. Given a task with C categories, we define C col-
ors which are evenly distributed in the 3-dimensional RGB
space. Specifically, following [28], the class index is rep-
resented by a 3-digit number with b-base system, where
b = ⌈C 1

3 ⌉. Thus, the margin between two colors is defined
as int( 256b ). The color for the i-th class is then [int( i

b2 )×m,



Depth Estimation Semantic Seg. Panoptic Seg. Denoising Deraining Light Enhance.
RMSE ↓ mIoU ↑ PQ ↑ SSIM ↑ SSIM ↑ SSIM ↑
NYUv2 ADE-20K COCO SIDD 5 datasets LoL

Ours 0.511 48.0% 35.5% 0.949 0.772 0.704

Non-diffusion 0.443 42.4% 19.8% 0.951 0.773 0.703
Train from scratch 0.528 46.6% 33.6% 0.948 0.764 0.704

Direct concat. 0.476 37.6% 27.1% 0.941 0.772 0.687

Table 1. We analyze the important design choices of our method and aim to provide a recipe for training diffusion-based generalists: 1.
diffusion models greatly outperform non-diffusion models on panoptic segmentation; 2. text-to-image generation pre-training leads to an
overall better performance; 3. conditioning on image features extracted from an encoder gives significant improvement over the raw image.

int( ib )%b×m, l%b×m]. At test time, we find the nearest
neighbor of the predicted color in the predefined class-to-
color mapping and predict the corresponding category.

Panoptic segmentation is solved as a combination of se-
mantic and instance segmentation. Semantic segmentation
labels are constructed as stated above. For instance seg-
mentation, we set N as the maximum number of instances
a single training image can contain. Then, we define N col-
ors which are evenly distributed in the 3-dimensional RGB
space as in semantic segmentation. Finally, we assign col-
ors to objects based on their spatial location to form the
RGB ground-truth label. For example, the instance whose
center is at the upper leftmost corner obtains the first color
and the lower rightmost gets the last color. At test time, the
model makes predictions twice with different text instruc-
tions and merge the results for panoptic segmentation.

Image restoration aims to predict the clean image from
corrupted images. Thus, the output space is inherently RGB
image and does not need further transformation to fit in the
framework.

3.2. A Diffusion Multi-Task Generalist Framework

By reformating the output space of different vision tasks
into images, it is natural to solve them together under a
conditional image generation framework. To this end, we
leverage the powerful diffusion models pre-trained for im-
age generation and re-purpose them in our use case.

Fig. 2 shows the overall pipeline of the method, which is
a conditional image generation framework with pixel-space
diffusion. The input is the noised target image X0 together
with the image conditioning and text conditioning. Com-
pared to the commonly used diffusion pipeline for condi-
tional image generation, there are two notable differences:
• We propose to directly perform diffusion in the pixel

space. As shown in Table 3, when mapping from the
latent space to the pixel space, visually uniform re-
gions actually have pixels of many different RGB values.
This variance can lead to inaccurate class mappings, and
consequently, suboptimal performance for semantic and
panoptic segmentation.

• The image conditioning is provided via a feature extractor
(we use ConvNeXt [17]) and is concatenated to the target
image X0. Compared to the widely adopted method of

directly concatenating the raw image as the condition, this
brings significant performance improvement, especially
for semantic and panoptic segmentation (see Table 1 for
ablation).

4. Experimental Results
Here, we first explain experimental settings in Section 4.1.
Then, we highlight important design choices in diffusion-
based multi-task generalists in Section 4.2 before compar-
ing our method with previous approaches in Section 4.3.

4.1. Datasets and Implementation Details

Datasets: We evaluate our method on six different dense
prediction tasks with various output formats. For depth es-
timation, we use NYUv2 [24] and report the Root Mean
Square Error (RMSE). For semantic segmentation, we eval-
uate on ADE20K [33] and adopt the widely used metric
of mean IoU (mIoU). For panoptic segmentation, we use
MS-COCO [16] and report panoptic quality as the mea-
sure. During inference, the model is forwarded twice for
each validation image with different instructions to obtain
the results of semantic and instance segmentation respec-
tively. The outputs are then merged together into the panop-
tic segmentation. Image restoration tasks are evaluated on
several popular benchmarks, including SIDD [1] for image
denoising, LoL [31] for low-light image enhancement, and
5 merged datasets [32] for deraining.
Implementation details. As mentioned above, we take the
Stable Diffusion v1.4 [22] checkpoint and finetune it jointly
on six tasks. The image feature extractor is an ImageNet-
21K [23] pre-trained ConvNeXt-Large [17]. The text en-
coder is Open-CLIP [20], which is used in Stable Diffu-
sion [22]. We adopt uniform sampling for each tasks ex-
cept panoptic segmentation, whose weight is twice as much
as the other tasks (as it is a combination of semantic and
instance segmentation). Following [5], we also adjust the
input scaling factor by a constant factor b in the forward
noising processing of diffusion. We use AdamW optimizer
[13] with constant learning rate of 0.0001, linearly warmed
up in the first 20,000 iterations. The target image resolu-
tion is 128 × 128 while the conditioning image resolution
is 512× 512. We train our model for 180,000 steps in total
with a batch size of 1024.



Target Depth Estimation Semantic Seg. Panoptic Seg. Denoising Deraining Light Enhance.
image RMSE ↓ mIoU ↑ PQ ↑ SSIM ↑ SSIM ↑ SSIM ↑

resolution NYUv2 ADE-20K COCO SIDD 5 datasets LoL

Generalist framework, task-specific models

UViM [14] 512× 512 0.467 - 45.8% - - -

Generalist models

Unified-IO [18] 256× 256 0.385 25.7% - - - -
InstructCV [11] 256× 256 0.297 47.2% - - - -

Painter [28] 448× 448 0.288 49.9% 43.4% 0.954 0.868 0.872
Painter [28] 128× 128 0.435† 28.4%† 22.6%† 0.922† 0.626† 0.773†

Ours 128× 128 0.448 48.7% 40.3% 0.954 0.815 0.758

Table 2. Our method achieves competitive performance in most of the tasks while trained at a much smaller target resolution of 128× 128.
When compared at the same resolution, our method shows superior performance over the previous best method (Painter [28]), especially
on semantic segmentation and panoptic segmentation. The best number is in bold and the second best number is underscored. †indicates
numbers from our reproduction.

4.2. Recipes for Diffusion-Based Generalists

In this section, we analyze the design choices of our method
and show their importance through ablation experiments.
Specifically, we show the importance of diffusion by train-
ing the same model as in Fig. 2 to directly generate target
images without using diffusion (non-diffusion). We study
the significance of image generation pre-training and image
encoder by training models without them (train from scratch
and direct concat.). If not specified, we train all models at a
target resolution of 64× 64 for 50,000 steps.

We attribute the success of our method to four aspects.
(1) While having similar results on image restoration tasks,
diffusion-based generalist achieves better performance than
non-diffusion models on segmentation tasks which requires
a global understanding of the scene and the semantics. For
example, the diffusion model reaches 35.5% PQ for panop-
tic segmentation while the non-diffusion model has only
19.8% (Table 1 ours v.s. non-diffusion). (2) Image gen-
eration pre-training on large scale dataset transfers useful
knowledge to the many downstream tasks. The model fine-
tuned from Stable Diffusion v1.4 [22] achieves better results
than the one trained from scratch across the tasks (Table
1 ours vs train from scratch). (3) The image conditioning
can take advantage of powerful pre-trained image encoders
by conditioning on the image features rather than the raw
image, which is in contrast to the standard practice for im-
age generation tasks. On semantic segmentation and panop-
tic segmentation, extracting features gives 10.4% and 8.4%
performance improvement, respectively (Table 1 ours v.s.
direct concat.). (4) Pixel diffusion is better than latent diffu-
sion as it does not suffer from the quantization issue while
upsampling (see Table 3 for an example).

4.3. Comparisons with Prior Art

We compare our model with recent vision generalists in
Table 2. With a much smaller target image resolution at
128 × 128, our method achieves competitive performance
across the tasks. In particular, when compared with the pre-

Input Image Generated RGB Image Class Prediction

Semantic Seg. Panoptic Seg.
mIoU ↑ PQ ↑

ADE-20K COCO

Latent Diffusion 17.1% 11.7%
Pixel Diffusion 48.0% 35.5%

Table 3. Upper: Semantic segmentation output of the latent diffu-
sion model. The perceptually same colored regions have different
pixel values and, therefore, are mapped to different class labels,
leading to bad final performance. While the red box contains only
one ground-truth class sky in generated RGB image, the final class
prediction has four classes after the quantization. Lower: Latent
diffusion suffers from the quantization issue while pixel diffusion
achieves good performance.

vious best model Painter [28] at the same target resolution,
our method has a significant margin over them, which high-
lights the potential of our method at a higher resolution.

5. Conclusion and Limitations

In this work, we explore a diffusion-based vision gener-
alist, where different dense prediction tasks are unified as
conditional image generation and we re-purpose pre-trained
diffusion models for it. Furthermore, we analyze differ-
ent design choices of diffusion-based generalists and pro-
vide a recipe for training such a model. In experiments,
we demonstrate the model’s versatility across six different
dense prediction tasks and achieve competitive performance
to the current state-of-the-art. This work, however, is also
subject to limitations. For example, full fine-tuning of the
pre-trained diffusion model at a larger target image resolu-
tion is memory intensive due to the pixel space diffusion.
Thus, exploring parameter-efficient tuning for such a model
would be an interesting future direction.
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A. Ablation Study
In this section, we analyze the effect of other important
hyper-parameters of our method, such as batch size, target
image resolution, and noise-signal ratio. Similar to Section
4.2, we train all models at a target resolution of 64× 64 for
50,000 steps by default.
Effect of batch size. Here, we discuss the effect of different
batch sizes for our method. As shown in Table 4, the per-
formance of most of the tasks improves with the increase of
the batch size. In particular, panoptic segmentation greatly
benefits from the large batch size.

Depth Sem. Seg. Pan. Seg. Denoise Detrain Enhance.
RMSE ↓ mIoU ↑ PQ ↑ SSIM ↑ SSIM ↑ SSIM ↑
NYUv2 ADE-20K COCO SIDD 5 datasets LoL

128 0.548 35.5% 26.2% 0.941 0.754 0.701
256 0.495 44.3% 30.0% 0.945 0.766 0.703
512 0.491 47.1% 33.5% 0.948 0.770 0.702

1024 0.511 48.0% 35.5% 0.949 0.772 0.704

Table 4. Large batch size improves the performance for all the
tasks except depth estimation.

Effect of target resolution. Table 5 studies the effect of
different target image resolutions. Since our method per-
forms diffusion in the pixel space, increasing the target im-
age resolution is important for good performance. Despite
the increased memory cost, our method achieves its best
performance at the resolution of 128× 128 and can be fur-
ther improved with even larger target images.

Depth Sem. Seg. Pan. Seg. Denoise Detrain Enhance.
RMSE ↓ mIoU ↑ PQ ↑ SSIM ↑ SSIM ↑ SSIM ↑
NYUv2 ADE-20K COCO SIDD 5 datasets LoL

32x32 0.514 44.4% 32.1% 0.940 0.743 0.653
64x64 0.511 48.0% 35.5% 0.949 0.772 0.704

128x128 0.467 49.2% 36.7% 0.953 0.810 0.762

Table 5. Effect of output resolution. Increasing the target image
resolution significantly improves the performance across tasks.

Importance of noise-signal ratio. In DDPM [12], the
forward diffusion process is defined as xt =

√
γtx0 +√

1− γtϵ, where x0 is the input image, ϵ is a Gaussian
noise, and t is the number of diffusion step. As shown
in [5], the denoising task at the same noise level (i.e. the
same t) becomes simpler with the increase in the image
size. In order to compensate for this, [5] proposed to scale
the input with a constant b to explicitly control the noise-

signal ratio, which results in the forward diffusion process
as xt =

√
γtbx0 +

√
1− γtϵ. As we reduce b, it increases

the noise levels. Table 6 shows the effect of the noise-signal
ratio b where b = 0.5 gives the best performance.

Depth Sem. Seg. Pan. Seg. Denoise Detrain Enhance.
RMSE ↓ mIoU ↑ PQ ↑ SSIM ↑ SSIM ↑ SSIM ↑
NYUv2 ADE-20K COCO SIDD 5 datasets LoL

0.1 0.497 46.9% 33.1% 0.948 0.770 0.702
0.3 0.511 48.0% 35.5% 0.949 0.772 0.704
0.5 0.514 49.3% 35.9% 0.949 0.774 0.708
0.7 0.533 48.2% 34.4% 0.949 0.773 0.707
1.0 0.572 40.3% 31.1% 0.948 0.770 0.706

Table 6. Importance of noise-signal ratio b in the forward diffusion
process xt =

√
γtbx0 +

√
1− γtϵ.

B. Qualitative Results
In this section, we visualize the output of our method on six
different tasks in figs. 3 to 8. We use DDIM at inference
time with 50 steps. Each figure shows the output of the
denoising process at the 0-th, 25-th, and 50-th steps.
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Figure 3. Qualitative results on images from ADE20K validation set. The text prompt is ”Performance semantic segmentation”. The
images are not cherry-picked.
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Figure 4. Qualitative results on images from MS-COCO validation set. The text prompt is ”Performance instance segmentation”. The
images are not cherry-picked.
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Figure 5. Qualitative results on images from NYU-V2 validation set. The text prompt is ”Performance depth estimation”. The images are
not cherry-picked.
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Figure 6. Qualitative results on images from SIDD validation set. The text prompt is ”Performance image restoration denoising”. The
images are not cherry-picked.
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Figure 7. Qualitative results on images from Deraining datasets’ validation sets. The text prompt is ”Performance image restoration
deraining”. The images are not cherry-picked.
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Figure 8. Qualitative results on images from LOL validation set. The text prompt is ”Performance image restoration light enhancement”.
The images are not cherry-picked.
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