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Figure 1. APAP, our novel shape deformation method, enables plausibility-aware mesh deformation and preservation of fine details of
the original mesh offering an interface that alters geometry by directly displacing a handle (red) along a direction (gray), fixing an anchor
vertex (green). Using a diffusion prior results in smoother geometry around the armchair handle, as seen in the example (middle column).

Abstract
We present As-Plausible-as-Possible (APAP) mesh de-

formation technique that leverages 2D diffusion priors to
preserve the plausibility of a mesh under user-controlled
deformation. Our framework uses per-face Jacobians to
represent mesh deformations, where mesh vertex coordi-
nates are computed via a differentiable Poisson Solve.
The deformed mesh is rendered, and the resulting 2D im-
age is used in the Score Distillation Sampling (SDS) pro-
cess, which enables extracting meaningful plausibility pri-
ors from a pretrained 2D diffusion model. To better pre-
serve the identity of the edited mesh, we fine-tune our 2D
diffusion model with LoRA. Gradients extracted by SDS
and a user-prescribed handle displacement are then back-
propagated to the per-face Jacobians, and we use iter-
ative gradient descent to compute the final deformation
that balances between the user edit and the output plau-
sibility. We evaluate our method with 2D and 3D meshes
and demonstrate qualitative and quantitative improvements
when using plausibility priors over geometry-preservation
or distortion-minimization priors used by previous tech-
niques. Our project page is at: https://as-plausible-as-
possible.github.io/

*Equal contribution.

1. Introduction

For 2D and 3D content, mesh is the most prevalent rep-
resentation, thanks to its efficiency in storage, simplicity
in rendering and also compatibility in common graphics
pipelines, versatility in diverse applications such as de-
sign, physical simulation, and 3D printing, and flexibility
in terms of decomposing geometry and appearance infor-
mation, with widespread adoption in the industry.

For the creation of 2D and 3D meshes, recent break-
throughs in generative models [18, 23, 24, 29, 30, 32, 36,
38] have demonstrated significant advances. These break-
throughs enable users to easily generate content from a text
prompt [23, 24, 30, 36, 38], or from photos [25, 30]. How-
ever, visual content creation typically involves numerous
editing processes, deforming the content to satisfy users’
desires through interactions such as mouse clicks and drags.
Facilitating such interactive editing has remained relatively
underexplored in the context of recent generative tech-
niques.

Mesh deformation is a subject that has been researched
for decades in computer graphics. Over time, researchers
have established well-defined methodologies, characteriz-
ing mesh deformation as an optimization problem that
aims to preserve specific geometric properties, such as the
Mesh Laplacian [20, 21, 34], local rigidity [8, 33], and
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mesh surface Jacobians [1, 6], while satisfying given con-
straints. To facilitate user interaction, these methodologies
have been extended to introduce specific user-interactive
deformation handles, such as keypoints [10, 16, 37], cage
mesh [12, 14, 15, 19, 39, 43], and skeleton [2, 41, 42], with
the blending functions defined based on the preservation of
geometric properties.

Despite the widespread use of classical mesh deforma-
tion methods, they often fail to meet users’ needs because
they do not incorporate the perceptual plausibility of the
outputs. For example, as illustrated in Fig. 1, when a user
intends to drag a point on the top of a table image, the classi-
cal deformation technique may introduce unnatural bending
instead of lifting the tabletop. This limitation arises because
deformation techniques solely based on geometric proper-
ties do not incorporate such semantic and perceptual pri-
ors, resulting in the mesh editing process becoming more
tedious and time-consuming.

Recent learning-based mesh deformation techniques [1,
12, 16, 22, 35, 41, 43] have attempted to address this prob-
lem in a data-driven way. However, they are also limited
by relying on the existence of certain variations in the train-
ing data. Even recent large-scale 3D datasets [3–5, 40] have
not reached the scale that covers all possible visual content
users might intend to create.

To this end, we introduce our novel mesh deforma-
tion framework, dubbed APAP (As-Plausible-As-Possible),
which exploits 2D image priors from a diffusion model
pretrained on an Internet-scale image dataset to enhance
the plausibility of deformed 2D and 3D meshes while pre-
serving the geometric priors of the given shape. Recently,
score distillation sampling (SDS) [24] has demonstrated
great success in generating plausible 2D and 3D content,
such as NeRF [13, 17, 44] and vector images [9, 11], us-
ing the distilled 2D image priors from a diffusion model.
We incorporate these diffusion-model-based 2D priors into
the optimization-based deformation framework, achieving
the best synergy between geometry-based optimization and
distilled-prior-based optimization.

2. Method
We present APAP, a novel handle-based mesh deformation
framework capable of producing visually plausible defor-
mations of either 2D or 3D triangular meshes. To achieve
this goal, we integrate powerful 2D diffusion priors into a
learnable Jacobian field representation of shapes.

We emphasize that leveraging 2D priors, such as la-
tent diffusion models (LDMs) [26] trained on large-scale
datasets [28], for shape deformation poses challenges that
require meticulous design choices. The following sections
will delve into the details of shape representation (Sec. 2.1)
and diffusion prior (Sec. 2.2), offering a rationale for the
design decisions underpinning our framework (Sec. 2.3).

2.1. Representing Shapes as Jacobian Fields

Let M0 = (V0,F0) denote a source mesh to be de-
formed, represented by vertices V0 ∈ RV×3 and faces
F0 ∈ RF×3. Users are allowed to select a set of ver-
tices used as movable handles designated by an indicator
matrix Kh ∈ {0, 1}Vh×V . We also require users to se-
lect a set of anchors, represented as another indicator ma-
trix Ka ∈ {0, 1}Va×V , to avoid trivial solutions (i.e., global
translations). Then, the handle and anchor vertices become
Vh = KhV0 and Va = KaV0.

Our framework also expects a set of vectors Dh ∈
RVh×3 that indicate the directions along which the handles
will be displaced. Furthermore, we let Th = Vh +Dh and
Ta = Va denote the target positions of the user-specified
handles and anchors, respectively.

In this work, we employ a Jacobian field J0 = {J0,f |f ∈
F0}, a dual representation of M0, defined as a set of per-
face Jacobians J0,f ∈ R3×3 where

J0,f = ∇fV0, (1)

and ∇f is the gradient operator of triangle f .
Conversely, we compute a set of deformed vertices V∗

from a given Jacobian field J by solving a Poisson’s equa-
tion

V∗ = argmin
V

∥LV −∇TAJ∥2, (2)

where ∇ is a stack of per-face gradient operators, A ∈
R3F×3F is the mass matrix and L ∈ RV×V is the cotangent
Laplacian of M0, respectively. Since L is rank-deficient,
the solution of Eqn. 2 cannot be uniquely determined un-
less we impose constraints. We thus consider a constrained
optimization problem

V∗ = argmin
V

∥LV −∇TAJ∥2 + λ∥KaV −Ta∥2, (3)

where λ ∈ R+ is a weight for the constraint term. Note
that we solve Eqn. 3 with the user-specified anchors as con-
straints to determine V∗.

Taking the derivative with respect to V, the problem in
Eqn. 3 turns into a system of equations(

LTL+ λKT
aKa

)
V = LT∇TAJ+ λKT

a Ta, (4)

which can be efficiently solved using a differentiable
solver [1] implementing Cholesky decomposition.

We let g denote a functional representing the afore-
mentioned differentiable solver for notational convenience,
V∗ = g (J,Ka,Ta). Since g is differentiable, we can de-
form M0 by propagating upstream gradients from various
loss functions to the underlying parameterization J. For in-
stance, one may impose a soft constraint on the locations of
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Figure 2. The overview of APAP. APAP parameterizes a triangular mesh as a per-face Jacobian field that can be updated via gradient-
descent. Given a textured mesh and user inputs specifying the handle(s) and anchor(s), our framework initializes a Jacobian field as a
trainable parameter. During the first stage, the Jacobian field is updated via iterative optimization of Lh, a soft constraint that initially
deforms the shape according to the user’s instruction. In the following stage, the mesh is rendered using a differentiable renderer R and
the rendered image is provided as an input to a diffusion prior finetuned with LoRA [7] that computes the SDS loss LSDS. The joint
optimization of Lh and LSDS improves the visual plausibility of the mesh while conforming to the given edit instruction.

selected handles during optimization with the objective of
the form:

Lh = ∥KhV
∗ −Th∥2. (5)

We will discuss how such a soft constraint can be blended
into our framework in Sec. 2.3. Next, we describe how to
incorporate a pretrained diffusion model as a prior for visual
plausibility.

2.2. Score Distillation for Shape Deformation

While traditional mesh deformation techniques make varia-
tions that match the given geometric constraints, their lack
of consideration on visual plausibility results in unrealistic
shapes. Motivated by recent success in text-to-3D litera-
ture, we harness a powerful 2D diffusion prior [26] in our
framework as a critic that directs deformation by scoring the
realism of the current shape.

Specifically, we distill its prior knowledge via Score Dis-
tillation Sampling (SDS) [24]. Let J denote the current Ja-
cobian field and V∗ be the set of vertices computed from J
following the procedure described in Sec. 2.1.

We render M∗ = (V∗,F) from a viewpoint defined by
camera extrinsic parameters C using a differentiable ren-
derer R, producing an image I = R (M∗,C). The diffu-
sion prior ϵ̂ϕ then rates the realism of I, producing a gradi-
ent

∇JLSDS (ϕ, I) = Et,ϵ

[
w (t) (ϵ̂ϕ (zt; y, t)− ϵ)

∂I
∂J

]
, (6)

where t ∼ U (0, 1), ϵ ∼ N (0, I), and zt is a noisy latent
embedding of I. The propagated gradient alters the geom-
etry of M by modifying J.

To increase the instance-awareness of the diffusion
model, we follow recent work [27, 31] on personalized im-
age editing and finetune the model using LoRA [7]. In par-
ticular, we first render M from n different viewpoints to

obtain a set I = {I1, . . . , In} of training images and in-
ject additional parameters to the model, resulting in an ex-
panded set of network parameters ϕ′. The parameters are
then optimized with a denoising loss [26]

L = Et,ϵ,z

[
∥ϵ̂ϕ′ (zt; y, t)− ϵ∥2

]
, (7)

where zt denotes a latent of a training image perturbed with
noise at timestep t.

The finetuned diffusion prior, together with a learnable
Jacobian field representation of the source mesh M0, com-
prises the proposed framework described in the following
section.

2.3. As-Plausible-As-Possible (APAP)

APAP tackles the problem of plausibility-aware shape de-
formation by harmonizing the best of both worlds: a learn-
able shape representation founded on classical geometry
processing, robust to noisy gradients, and a powerful 2D
diffusion prior finetuned with the image(s) of the source
mesh for better instance-awareness.

We provide an overview of the proposed pipeline in
Fig. 2. The detailed algorithm is presented in the supple-
mentary material. We delve into details in the following.

Provided with a textured mesh M0, handles Kh, an-
chors Ka, as well as their target positions Th and Ta as
inputs, APAP yields a plausible deformation M of M0

that conforms to the given handle-target constraints. Be-
fore deforming M0, we render M0 from a single view in
the case of 2D meshes and four canonical views (i.e., front,
back, left, and right) for 3D meshes and use the images to
finetune Stable Diffusion [26] by optimizing LoRA [7] pa-
rameters injected to the model (the red line in Fig. 2). Si-
multaneously, APAP computes the Jacobian field J0 of the
input mesh M0 and initializes it as a trainable parameter J.

APAP deforms the input mesh through two stages. In the
FirstStage, it first deforms the input mesh according
to instructions from users without taking visual plausibility
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Figure 3. Qualitative results from 3D shape deformation. We visualize the source shapes and their deformations made using ARAP [33]
and ours by following the instructions each of which specifies a handle (red), an edit direction denoted with an arrow (gray), and an anchor
(green). We showcase the rendered images captured from two different viewpoints, as well as one zoom-in view highlighting local details.

into account. The subsequent SecondStage integrates
a 2D diffusion prior into the optimization loop, simultane-
ously enforcing user constraints and visual plausibility.

At every iteration of the FirstStage illustrated as
the blue box in Fig. 2, we compute the vertex positions
V∗ corresponding to the current Jacobian field J by solv-
ing Eqn. 3 using the anchors specified by Ka as hard con-
straints. Then, we compute the soft constraint Lh defined as
Eqn. 5 that drags a set of handle vertices KhV

∗ toward the
corresponding targets Th. The interleaving of differentiable
Poisson solve and optimization of Lh via gradient-descent
is repeated for M iterations. This progressively updates J,
treated as a learnable black box in our framework, deform-
ing M0. Consequently, the edited mesh M∗ = (J,F0) fol-
lows user constraints at the cost of the degraded plausibility,
mitigated in the following stage through the incorporation
of a diffusion prior.

The result of FirstStage then serves as an initializa-
tion for the SecondStage, illustrated as the green box in
Fig. 2 guided by plausibility constraint LSDS. Unlike the
FirstStage where the update of J was purely driven
by the geometric constraint Lh, we aim to steer the op-
timization based on the visual plausibility of the current
mesh M∗. To achieve this, we render M∗ using a differen-
tiable renderer R using the same viewpoint(s) from which
the training image(s) for finetuning was rendered. When
deforming 3D meshes, we randomly sample one viewpoint
at each iteration. The rendered image I is used to evaluate
LSDS which is optimized jointly with Lh for N iterations.
The combination of geometric and plausibility constraints
improves the visual plausibility of the output while encour-
aging it to conform to the given constraints.

We note that the iterative approach in the FirstStage
leads to better results than alternative update strategies such
as deforming the source mesh M0 by minimizing ARAP
energy [33] or, solving Eqn. 3 using both Kh and Ka as
hard constraints. In the supplementary material, we show
that both methods produce distortions that cannot be cor-

rected by the diffusion prior in the subsequent stage. Specif-
ically, directly solving Eqn. 3 using all available constraints
only yields the least squares solution V∗ without updating
the underlying Jacobians J, resulting in the aforementioned
distortions.

3. Experiments
We evaluate APAP in downstream applications involving
manipulation of 3D and 2D meshes. While we focus on
3D mesh manipulation, we summarize experimental details,
more 3D deformation examples, and additional results us-
ing 2D meshes in the supplementary material.

3.1. 3D Shape Deformation

Qualitative Results. We showcase examples of 3D shape
deformation where each deformation is specified by a han-
dle (red), an edit direction (gray), and an anchor (green).
As shown in Fig. 3, APAP is capable of manipulating
3D shapes to improve visual plausibility which is not
achievable by solely relying on geometric prior such as
ARAP [33]. For instance, given a user input that drags
a handle on one blade of an axe (the first row) along an
arrow, APAP simultaneously expands both blades of the
axe whereas ARAP [33] produces distortions near the head.
Similar examples that demonstrate symmetry-awareness of
APAP can be found in other cases such as a car (the sec-
ond row), and an owl (the sixth row) where a user lifts only
one side of the shape upward and the symmetry is recovered
by APAP which cannot be achieved by ARAP [33]. Also,
note that APAP is capable of making a smooth articulation
at the leg of the wolf (the fourth row) by adjusting the over-
all posture in comparison to ARAP which creates an excess
bending.
4. Conclusion
We presented APAP, a novel deformation framework that
tackles the problem of plausibility-aware shape deformation
while offering intuitive controls over a wide range of shapes
represented as triangular meshes.
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