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Abstract

Text to image generative models have recently been

leveraged to perform monocular depth estimation, by in-

corporating natural language as additional guidance. Al-

though yielding impressive results, the impact of the lan-

guage prior, particularly in terms of generalization and ro-

bustness, remains unexplored. In this paper, we address

this gap by quantifying the impact of this prior and intro-

duce methods to benchmark its effectiveness across vari-

ous settings. We generate "low-level" sentences that con-

vey object-centric, three-dimensional spatial relationships,

incorporate them as additional language priors and eval-

uate their downstream impact on depth estimation. Our

key finding is that current language-guided depth estimators

perform optimally only with scene-level descriptions and

counter-intuitively fare worse with low level descriptions.

Despite leveraging additional data, these methods are not

robust to directed adversarial attacks and decline in perfor-

mance with an increase in distribution shift. Finally, to pro-

vide a foundation for future research, we identify points of

failures and offer insights to better understand these short-

comings. With an increasing number of generative models

using language for depth estimation, our findings highlight

the opportunities and pitfalls that require careful consider-

ation for effective deployment in real-world settings.

1. Introduction

Breakthroughs in large-scale vision–language pretraining
[10, 14, 19] and diffusion-based modeling techniques [15,
16] have been effective in significantly improving the state-
of-the-art in higher-level semantic visual understanding
tasks. Lower-level vision has a different perspective on im-
age understanding and seeks to understand images in terms
of geometric and physical properties of the scene such as es-
timating the depth and surface normals of each pixel in an
image. Until now, state-of-the-art techniques for low-level
vision tasks [11, 20] did not use natural language. Recently,

generative models originally developed for high-level vi-
sion tasks have started to demonstrate exceptional results as
for pixel-level dense prediction tasks such as semantic seg-
mentation, as well as low-level tasks such as depth estima-
tion [8, 9, 23]. Through the use of natural language, these
methods seek to bridge the gap between high and low-level
vision tasks.

In this paper, we walk this bridge and investigate genera-
tive models that perform language-guided monocular depth
estimation, and ask a simple question - what is the impact

of the natural language prior, introduced by text to im-

age generative models, in such a setting? Our study is
positioned to complement early exploration of generative
models for low-level tasks, especially given the emerging
evidence of state-of-the-art performance on tasks such as
depth estimation. We create multi-modal transformations
to evaluate the true low-level understanding of these mod-
els . We construct natural language sentences that encode
low-level object-specific spatial relationships and generate
image captions using pixel-level ground truth annotations.
We perform image-level adversarial attacks implementing
object-level masking, comparing vision-only and language-
guided depth estimators on varying degrees of distribution
shift.

Our contributions and findings are summarized below:

• We quantify the language guidance used by current gen-
erative methods for monocular depth estimation . We find
that existing approaches possess a strong scene-level bias,
and become less effective at localization when low-level
information is provided. We additionally offer analysis
grounded in foundation models to explain these short-
comings.

• Through a series of supervised and zero-shot ex-
periments, we demonstrate that existing language-
conditioned generative models are less robust to distri-
bution shifts than vision-only models.

• We develop a framework to generate natural language
sentences that depict low-level spatial relationships in an
image by leveraging pixel and segmentation annotations.
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Figure 1. An illustration of language-guided depth estimation, showing depth maps generated by VPD (zero-shot) with the corresponding
language guidance that we use as part of our study. The first row shows the effect of progressively adding descriptions as input, while the
second row shows depth maps generated by single sentence inputs.

Sentence Type Generated Sentence

Scene Level A photo of a kitchen.

Caption A kitchen with a bowl of fruit on the counter.

Depth A cabinet is farther away than an apple.

Horizontal A refrigerator is to the right of a tea kettle.

Vertical A range hood is above a microwave.

Language-Guided

Depth Estimator

 

f
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Figure 2. We systematically create additional knowledge for the depth estimator by leveraging intrinsic and low-level image properties.
For each image we derive scene addendums, object and spatial level sentences and in supervised and zero-shot settings, quantify the effect
of these sentences on monocular depth estimation.

2. Language-Guided Depth Estimation by

Generative Models

2.1. Preliminaries

The use of natural language descriptions, by text to image
generative models, to address low-level tasks is a new re-
search direction. Although at a nascent stage, early evi-
dence from depth estimation suggests that language can in-
deed improve the accuracy of depth estimators. This evi-
dence comes from 3 recent approaches: VPD [23], TADP
[8] and EVP [9] that show state-of-the-art results on stan-
dard depth estimation datasets such as NYU-v2 [12]. Our
experiments are based on VPD thanks to open-source code.

The VPD model f takes as input an RGB image I and its
scene-level natural language description S, and is trained to
generate depth map DI of the input image. VPD has a tra-
ditional encoder-decoder architecture where, the encoding
block consists of:
(a) a frozen CLIP text encoder which generates text fea-

tures of S, and
(b) a frozen VQGAN [3] encoder which generates features

of I in its latent space.

The cross-modal alignment is learnt in the U-Net of the Sta-

ble Diffusion [16] model, which generates hierarchical fea-
ture maps. The prediction head, implemented as a Seman-
tic FPN [7], is fed these feature maps for downstream depth
prediction, optimizing the Scale-Invariant Loss.

2.2. Diverse Sentence Creation

Figure 2 depicts our workflow of sentence generation.
Sentences Describing Spatial Relationships : For a

given image, our goal is to generate sentences that repre-
sent object-centric, low-level relationships in that image.
Humans approximate depth through pictorial cues which
includes relative relationships between objects. We focus
on generating pairwise relationships between objects with-
out creating complex sentences that would necessitate the
model to engage in additional, fine-grained object ground-
ing. These descriptions, which mirror human language pat-
terns, explicitly contain depth information and could be po-
tentially beneficial for improving depth estimation. Specifi-
cally, for all images I , we have semantic and depth ground-
truth annotations at an instance and object-level across the
dataset. Given this information, we generate sentences that



Sentence Type �1 (") �2 (") �3 (") RMSE (#) Abs. REL (#) Log10 (#)
Scene-Level (Baseline) 0.861 0.977 0.997 0.382 0.122 0.050

Scene-Level + Low-Level 0.819 0.964 0.993 0.440 0.149 0.059
Only Low-Level 0.844 0.969 0.994 0.424 0.135 0.055

Table 1. Counter-intuitively, training with spatial sentences im-
pairs performance compared to training with scene-level descrip-
tions, limiting the efficacy of language-guided depth estimation.

Sentence Type �1(") �2(") �3(") RMSE (#) Abs. REL (#) Log10 (#)

Scene-Level 0.962 0.994 0.999 0.252 0.068 0.029

Scene-Level + Caption ⇤ 0.950 0.993 0.998 0.279 0.076 0.033
Scene-Level + Caption + Depth ⇤ 0.932 0.992 0.998 0.311 0.084 0.037
Scene-Level + Caption + Depth + 2D ⇤ 0.864 0.973 0.993 0.403 0.109 0.050
Scene-Level + Caption � 0.916 0.986 0.997 0.347 0.092 0.041
Scene-Level + Caption + Depth � 0.878 0.980 0.994 0.399 0.105 0.048
Scene-Level + Caption + Depth + 2D � 0.849 0.973 0.994 0.443 0.115 0.053
Caption Only 0.827 0.961 0.988 0.474 0.127 0.059
Depth Only 0.372 0.696 0.878 1.045 0.284 0.153
Vertical Only 0.260 0.583 0.824 1.223 0.329 0.185
Horizontal Only 0.332 0.633 0.838 1.148 0.306 0.170

Table 2. In a zero-shot setting, VPD’s performance is highest with
baseline scene-level sentences. However, performance drops when
more detailed, low-level information is introduced, as indicated by
an increase in RMSE.

describe the spatial relationship between a pair of objects,
in an image. We consider 3D relationships, i.e. depth-wise,
horizontal and vertical relationships between an object pair,
and thus the set of all spatial relationships R is defined as
{front, behind, above, below, left, right}. Given I , and
two objects A and B present in it, we create templatized
sentences, which we share in the Appendix.

Image Captions : We generate captions corresponding
to each image, which can be characterized as providing in-
formation in addition to scene level description. The goal is
to test the model’s performance with a detailed scene inter-
pretation, more extensive than the baseline sentence S.

3. Measuring the Effect of Language Guidance

3.1. Supervised Experiments

In this setting, we answer, does training on low-level lan-

guage help? We find that when trained and evaluated
with additional low-level language, model performance de-
creases (Table 1). Apart from the baseline model, we train
two more models s.t. for each I

(a) baseline sentence S and 1-3 supplementary sentences
containing low-level relationships are used, and

(b) 4-6 sentences where only spatial relationships are used.
Compared to only low-level sentences, combining low-level
with scene-level sentences deteriorates performance. This
indicates that current approaches interpret language only
when it is coarse-grained and require scene-level semantics
for optimal performance.

# of Depth Sentences �1 (") �2 (") �3 (") RMSE (#) Abs. REL (#) Log10 (#)

1 0.410 0.745 0.903 0.995 0.265 0.140
2 0.457 0.774 0.927 0.929 0.248 0.129
3 0.538 0.841 0.951 0.819 0.218 0.109
4 0.582 0.869 0.965 0.770 0.205 0.101

Table 3. VPD’s performance when provided with multiple number
of depth sentences. Overall performance is lower in comparison to
baseline but iteratively improves as more sentences are provided,
conveying better scene-level alignment.

3.2. Zero-Shot Findings

All zero-shot experiments are performed on the open-source
VPD model. Language embeddings are generated via CLIP
with an embedding dimension of 768, and image captions
are generated using the BLIP-2-OPT-2.7b model [10].

Impact of Sentence Types: We evaluate VPD on our
created sentences as shown in Table 2. To avoid ambigu-
ity, we only consider sentences between unique objects in a
scene. The original method averages out multiple scene-
level descriptions, which are created using 80 ImageNet
templates [22], and leverages the mean CLIP embedding
as high level information. Following the original method, ⇤

in Table 2 represents the set-up, where for every I , we gen-
erate embeddings by stacking the mean baseline embedding
and our sentence embeddings while in �, for every sen-
tence T 2 the ImageNet Template, we concatenate T and
our sentences, and compute its CLIP embedding. The dis-
tinction lies in the weighting : the former treats baseline and
additional sentences equally, whereas the latter gives more
weight to low-level sentences by virtue of them being added
for each sentence in the template.

We re-affirm our initial findings through Table 2. the
method maintains its optimal performance only when pre-
sented with scene-level sentences. The performance grad-
ually worsens as additional knowledge (both high and low-
level) is provided. Other forms of high-level language also
seem to deteriorate performance. We observe a clear bias
towards scene level description. For example, (Baseline +
Caption) and (Caption Only) always outperform (Baseline
+ Caption + X) and (Depth/2D Only). This claim can be
further underlined by the � decrease in performance from
⇤ to �, showing a distinct proclivity towards scene-level de-
scriptions. In Figure 1, we present a visual illustration of
the scene bias that persists in these methods.

Does Number of Sentences Matter? We find that us-
ing multiple low-level sentences, each describing spatial re-
lationships, helps performance – performance is correlated
with number of such sentences used. This can be attributed
to more sentences offering better scene understanding. We
find again, that model needs enough "scene-level" repre-
sentation to predict a reasonable depth map as observed in
Table 3. When the number of sentences is increased from
one to four we observe a 41% increase and a 30% decrease



Relationship
Original
Sentence

Relationship
Switch

Object
Switch �orig.�rel. �orig.�obj.

Horizontal 25.675 25.665 25.699 0.009 -0.024
Vertical 23.138 23.161 23.206 -0.023 -0.068
Depth 23.613 23.562 23.537 0.050 0.075

Table 4. CLIP struggles at differentiating between various spatial
sentences, often producing higher scores for incorrect sentences
spatial relationships.

in �1 and RMSE, respectively.

3.3. Potential Explanations for Failure Modes

The lack of understanding of spatial relationships of
Diffusion-based T2I models is well studied by VISOR [4]
and T2I-CompBench [6]. Studies [1] show that the cross-
attention layers of Stable Diffusion lack spatial faithfulness
to the input prompt; these layers itself are used by VPD to
generate feature maps which could explain the current gap
in performance. Similarly, to quantify CLIP’s understand-
ing of low-level sentences, we perform an experiment (Ta-
ble 4) where we generate the CLIPScore [5] between RGB
Images from NYUv2 and our generated ground-truth sen-
tences. We compare the above score, by creating adversar-
ial sentences where we either switch the relationship type
or the object order, keeping the other fixed. We find that a)

CLIPScore for all the combinations are low but more impor-
tantly, b) the � difference between them is negligible; with
the incorrect sentences sometimes yielding a higher score.

4. Robustness and Distribution Shift

To assess performance under adversarial conditions, we
setup the following experiments where we compare vision-
only methods with VPD :

Masking : We perturb the image I in this setup, by
masking an object in the image space. To offset the image-
level signal loss, we include a language-level input specify-
ing the precise relative position of the masked object with
another object. We find that vision-only models are more

resilient to masking in comparison to language-guided
depth estimators. We compare AdaBins and VPD (Table
5) and find that the latter’s � drop in performance is sig-
nificantly more in comparison to its baseline performance.
Despite leveraging additional information about the relative
spatial location, VPD is less resilient in comparison to Ad-
aBins. Following previous trends, we also find that the per-
formance deteriorates significantly when scene-level infor-
mation is removed. In these experiments, we compare VPD
with AdaBins [2], MIM-Depth [21] and IDisc [13].

Scene Distribution Shift under the Supervised Set-

ting: We define a new split of the NYUv2 dataset, where
the train and test set have 20 and 7 non-overlapping scenes,
with a total of 17k and 6k training and testing images. With
this configuration, we train all the corresponding models

Model, Image Sentence � �1 (#) � RMSE (#) � Abs. REL (#)

VPD Scene-Level + Depth 0.062 0.093 0.024
VPD Depth 0.586 0.794 0.213
AdaBins N/A 0.008 0.007 0.002

Table 5. Under the masked image setting, we compare � decrease
of VPD with AdaBins (vision-only depth estimator). AdaBins is
significantly more robust to masked objects than VPD.

Method
Parameters

(in Millions) �1 (") RMSE (#) �RMSE(original)%(#) Abs. REL (#)

AdaBins 78 0.763 0.730 100.54 0.168
MIM-Depth 195 0.872 0.527 83.62 0.115

IDisc 209 0.836 0.609 94.56 0.129
VPD 872 0.867 0.547 107.48 0.121

Table 6. Comparison of VPD and Vision-only models in the super-
vised, scene distribution setting. When evaluated on novel scenes,
VPD has the largest drop in performance, compared to its baseline.

and benchmark their results and adhere to all of the meth-
ods’ original training hyper-parameters, only slightly reduc-
ing the batch size of IDisc to 12. Although VPD follows
MIM-Depth as the 2nd-best performing model, we find that
VPD has the largest performance drop amongst its counter-
parts, 107%, when compared to their original RMSE (Ta-
ble 6) . Since training is involved, we also allude to the
# of trainable parameters to quantify the trade-off between
performance and efficiency of the respective models. We
present additional results in the Appendix.

This difference in performance between the two cate-
gories of models likely occurs because in language guided
depth estimators, the model is forced to learn correlations
between an in-domain and its high-level description. It can-
not, therefore, map its learned representation to new data
when an out-of-domain image with an unseen description
is presented. On the contrary, vision-only depth estimators
are not bound by any language constraints, and hence learn
a distribution which better maps images to depth.

5. Conclusion

The use of language guidance by text to image models
opens new possibilities for bridging language and low-level
vision. However, we find that current methods only work
in a restricted setting with scene-level description. They
do not perform well with low-level language, lack under-
standing of semantics and possess a strong scene-level bias.
Compared to vision-only models, current language guided
estimators are less resilient to directed adversarial attacks
and show a steady decrease in performance with an increase
in distribution shift. As low-level systems are actively de-
ployed in real-world settings, it is imperative that these fail-
ures are addressed and the role of language is better under-
stood. Our findings are a first step towards this and can be
used as a means for better utilization of generative models
in perception tasks.
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