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Abstract

We study the problem of inferring scene affordances by
presenting a method for realistically inserting people into
scenes. Given a scene image with a marked region and an
image of a person, we insert the person into the scene while
respecting the scene affordances. Our model can infer the
set of realistic poses given the scene context, re-pose the
reference person, and harmonize the composition. We set
up the task in a self-supervised fashion by learning to re-
pose humans in video clips. We train a large-scale diffusion
model on a dataset of 2.4M video clips that produces diverse
plausible poses while respecting the scene context. Given
the learned human-scene composition, our model can also
hallucinate realistic people and scenes when prompted with-
out conditioning and also enables interactive editing. We
conduct quantitative evaluation and show that our method
synthesizes more realistic human appearance and more natu-
ral human-scene interactions when compared to prior work.
This work will also appear as a full paper in CVPR 2023.

1. Introduction
A hundred years ago, Jakob von Uexküll pointed out the

crucial, even defining, role that the perceived environment
(umwelt) plays in an organism’s life [34]. At a high level,
he argued that an organism is only aware of the parts of
the environment that it can affect or be affected by. In a
sense, our perception of the world is defined by what kinds
of interactions we can perform. Related ideas of functional
visual understanding (what actions does a given scene afford
an agent?) were discussed in the 1930s by the Gestalt psy-
chologists [20] and later described by J.J. Gibson [10] as
affordances. Although this direction inspired many efforts
in vision and psychology research, a comprehensive com-
putational model of affordance perception remains elusive.
The value of such a computational model is undeniable for
future work in vision and robotics research.

The past decade has seen a renewed interest in such
computational models for data-driven affordance percep-
tion [6, 9, 13, 14, 36]. Early works in this space deployed a
mediated approach by inferring or using intermediate seman-
tic or 3D information to aid in affordance perception [13],

while more recent methods focus on direct perception of af-
fordances [6, 9, 36], more in line with Gibson’s framing [10].
However, these methods are severely constrained by the
specific requirements of the datasets, which reduce their
generalizability.

To facilitate a more general setting, we draw inspiration
from the recent advances in large-scale generative models,
such as text-to-image systems [27,28,30]. The samples from
these models demonstrate impressive object-scene compo-
sitionality. However, these compositions are implicit, and
the affordances are limited to what is typically captured in
still images and described by captions. We make the task
of affordance prediction explicit by putting people “into the
picture” [13] and training on videos of human activities.

We pose our problem as a conditional inpainting task
(Fig. 1). Given a masked scene image (first row) and a ref-
erence person (first column), we learn to inpaint the person
into the masked region with correct affordances. At training
time, we borrow two random frames from a video clip, mask
one frame, and try to inpaint using the person from the sec-
ond frame as the condition. This enforces the model to learn
both the possible scene affordances given the context and
the necessary re-posing and harmonization needed for a co-
herent image. At inference time, the model can be prompted
with different combinations of scene and person images. We
train a large-scale model on a dataset of 2.4M video clips of
humans moving in a wide variety of scenes.

Apart from the conditional task, our model can be
prompted in different ways at inference time. As shown
in the last row Fig. 1, when prompted without a person, our
model can hallucinate a realistic person. Similarly, when
prompted without a scene, it can also hallucinate a realistic
scene.

To summarize, our contributions are:
• We present a fully self-supervised task formulation for

learning affordances by learning to inpaint humans in
masked scenes.

• We present a large-scale generative model for human
insertion trained on 2.4M video clips and demonstrate
improved performance compared to the baselines.

• In addition to conditional generation, our model can be



Figure 1. Given a masked scene image (first row) and a reference person (first column), our model can successfully insert the person into the
scene image. The model infers the possible pose (affordance) given the scene context, reposes the person appropriately, and harmonizes the
insertion. We can also partially complete a person (last column) and hallucinate a person (last row) when no reference is given.

prompted in multiple ways to support person hallucina-
tion and scene hallucination.

2. Related Work
Scene and object affordances. Inspired by the work of
J.J. Gibson [10], a long line of papers have looked into
operationalizing affordance prediction [1, 5, 6, 8, 9, 12, 13, 19,
23, 36]. Prior works have also looked at modeling human-
object affordance [4, 11, 21, 37, 38] and synthesizing human
pose (and motion) conditioned on an input scene [2, 22, 35].
Several methods have used videos of humans interacting
with scenes to learn about scene affordances [6, 8, 36]. For
example, Wang et al. [36] employed a large-scale video
dataset to directly predict affordances. However, their model
relies on having plausible ground-truth poses for scenes and
hence only performs well on a small number of scenes and
poses. On the other hand, we work with a much larger dataset
and learn affordances in a fully self-supervised generative
manner. By virtue of scale, our work generalizes better to
diverse scenes and poses and could be scaled further [33].
Diffusion models. Introduced as an expressive and powerful
generative model [32], diffusion models have been shown to
outperform GANs [7, 17, 25] in generating more photorealis-
tic and diverse images unconditionally or conditioned by text.
With a straightforward architecture, they achieve promis-
ing performance in several text-to-image [24, 27, 28, 30],
video [16, 31], and 3D synthesis [26] tasks. We leverage
ideas presented by Rombach et al. [28] which first encodes
images into a latent space and then performs diffusion train-

ing in the latent space. We also use classifier-free guidance,
introduced by Ho et al. [18], a sampling trick that yields
higher-quality samples by trading-off diversity.

3. Methods
We use the latent diffusion model as our base architecture.

We present details on our problem formulation in Sec. 3.1,
our training data in Sec. 3.2, and our model in Sec. 3.2.

3.1. Formulation
The inputs to our model contain a masked scene image

and a reference person, and the output image contains the
reference person re-posed in the scene’s context.

Inspired by Humans in Context (HiC) [1], we generate
a large dataset of videos with humans moving in scenes
and use frames of videos as training data in our fully self-
supervised training setup. We pose the problem as a con-
ditional generation problem (shown in Fig. 2). At training
time, we source two random frames containing the same
human from a video. We mask out the person in the first
frame and use it as the input scene. We then crop out and
center the human from the second frame and use it as the
reference person conditioning. We train a conditional latent
diffusion model conditioned on both the masked scene image
and the reference person image. This encourages the model
to infer the right pose given the scene context, hallucinate
the person-scene interactions, and harmonize the re-posed
person into the scene seamlessly in a self-supervised manner.

At test time, the model can support multiple applications,
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Figure 2. Architecture overview. We source two random frames from a video clip. We mask out the person in the first frame and use the
person from the second frame as conditioning to inpaint the image. We concatenate the latent features of the background image and rescaled
mask along with the noisy image to the denoising UNet. Reference person embeddings (CLIP ViT-L/14) are passed via cross-attention.

inserting different reference humans, hallucinating humans
without references, and hallucinating scenes given the hu-
man. We achieve this by randomly dropping conditioning
signals during training. We evaluate the quality of person
conditioned generation, person hallucination and scene hal-
lucination in our experimental section.

3.2. Training data
We generate a dataset of 2.4 million video clips of humans

moving in scenes. We follow the pre-processing pipeline
defined in HiC [1]. We start from around 12M videos, in-
cluding a combination of publicly available computer vision
datasets as in Brooks et al. [1] and proprietary datasets. First,
we resize all videos to a shorter-edge resolution of 256 pixels
and retain 256× 256 cropped segments with a single person
detected by Keypoint R-CNN [15]. We then filter out videos
where OpenPose [3] does not detect a sufficient number of
keypoints. This results in 2.4M videos, of which 50,000
videos are held out as the validation set, and the rest are used
for training. Finally, we use Mask R-CNN [15] to detect
person masks to mask out humans in the input scene image
and to crop out humans to create the reference person.

4. Experiments
We present evaluations on a few different tasks. First,

we show results on conditional generation with a reference
person in Sec. 4.1. We then present results on person halluci-
nations in Sec. 4.2 and scene hallucinations in Sec. 4.3 and
compare with Stable Diffusion [28] and DALL-E 2 [27] as
baselines.

4.1. Conditional generation
We evaluate the conditional task of generating a target im-

age given a masked scene image and a reference person. We

present qualitative results for our best-performing model in
Fig. 3. In the top two rows, we show how our model can in-
fer candidate poses given scene context and flexibly re-pose
the same reference person into various different scenes. In
the bottom two rows, we also show how different people can
coherently be inserted into the same scene. The generated
images show the complex human-scene composition learned
by our model. Our model also harmonizes the insertion by
accounting for lighting and shadows.

4.2. Person Hallucination
We evaluate the person hallucination task by dropping

the person conditioning and compare with baselines Stable
Diffusion [29] and DALL-E 2 [27]. We evaluate our model
by passing an empty conditioning person.

We present qualitative results in Fig. 4 where our model
can successfully hallucinate diverse people given a masked
scene image. The hallucinated people have poses consistent
with the input scene affordances. We present qualitative
baseline comparisons in Fig. 5, we observe that baseline
models sometimes ignore the scene context while our model
does better at hallucinating humans consistent with the scene.

4.3. Scene Hallucination
For the scene hallucination task, we pass the reference

person as the scene image. The model then retains the lo-
cation and pose of the person and hallucinates a consistent
scene around the person. We evaluate the constrained setup
SD and DALL-E 2 with the same prompt as before.

We present qualitative results of in Fig. 7. Some qualita-
tive baseline comparisons are presented in Fig. 6. Compared
to the baselines, our model synthesizes more realistic scenes
while maintaining coherence with the input reference person.



Figure 3. Qualitative results of conditional generation. In the top 2 rows, we show a reference person in the first column, followed by four
pairs of masked scene image and corresponding result. In the bottom 2 rows, we show a masked scene image in the first column, followed by
four pairs of reference person and corresponding result. Our results have the reference person re-posed correctly according to the scene.

Figure 4. Qualitative results of person hallucination. From left
to right, GT image, masked scene image, 3 hallucinated persons.

Figure 5. Baseline comparisons for person hallucination. From
left to right, ground-truth, masked scene image, DALL-E 2 result,
Stable Diffusion result and our result. Our model does the best job
in hallucinating humans consistent with the context.

Figure 6. Baseline comparisons for scene hallucination. From
left to right, ground-truth, reference person, DALL-E 2 result,
Stable Diffusion result, and our result.

Figure 7. Scene hallucination. From left to right, ground-truth,
reference person, three hallucinated scene samples.

5. Conclusion
In this work, we propose a novel task of affordance-aware

human insertion into scenes and we solve it by learning a
conditional diffusion model in a self-supervised way using
video data. We show various qualitative results to demon-
strate the effectiveness of our approach. We hope this work
will inspire other researchers to pursue this new research
direction.
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