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Abstract

Multi-task visual learning is a fundamental problem in
computer vision. However, current research has primarily
focused on the multi-task dense prediction setting, which
fails to account for the underlying 3D world with multi-
view consistent structures and lacks the ability to hallu-
cinate. In this work, we introduce a novel problem set-
ting called multi-task view synthesis (MTVS), which refor-
mulates multi-task prediction as a set of novel-view syn-
thesis tasks for multiple scene properties, including RGB.
To tackle this problem, we propose MuvieNeRF, a unified
framework equipped with our novel Cross-View Attention
(CVA) and Cross-Task Attention (CTA) modules. With these
modules, MuvieNeRF is able to facilitate the interaction
among the bottom-up signals from different downstream
tasks and different source views, thereby enabling the flow
of knowledge sharing across all the tasks. MuvieNeRF is
capable of simultaneously synthesizing different scene prop-
erties with promising visual quality, outperforming conven-
tional discriminative models in various settings.

1. Introduction
When observing a scene, humans are able to mentally

simulate how the objects within it would look like from
a novel viewpoint and in a versatile manner, hallucinating
not only the color of the objects but also various associated
scene properties, such as their surface orientation, seman-
tic marks, and edge patterns [35]. Motivated by this, there
has been a growing interest in equipping modern robots
with similar capabilities to solve multiple tasks. However,
current research [28, 58, 57] has primarily focused on the
multi-task dense prediction setting, which involves using a
conventional discriminative model to jointly predict multi-
ple pixel-level scene properties with the given RGB images
(see Figure 1(a)). Approaches developed for this setting are
restrictive in practice, because they often treat each image
individually, without constructing an explicit model of the
3D world that adheres to the principle of multi-view consis-
tency. More importantly, they lack the ability to “imagine”
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(a) Conventional multi-task learning setting

(b) Our multi-task view synthesis pipeline
Figure 1. Comparison between (a) the conventional multi-task
learning scheme and (b) our multi-task view synthesis setting. The
conventional “discriminative” multi-task learning takes single im-
ages and makes predictions for different visual tasks. Multi-task
view synthesis aims to render visualizations for multiple scene
properties at novel views.

– they are not able to infer scene properties from an unseen
view as the RGB images are always required.

To address these limitations, this work revisits multi-task
learning (MTL) [5] from a novel synthesis perspective and
proposes a new, more flexible problem setting that formu-
lates multi-task visual learning as a set of novel-view syn-
thesis problems. We refer to this setting as multi-task view
synthesis (MTVS) (see Figure 1(b)). For example, predict-
ing surface normals for a given image can be treated as visu-
alizing a 3-channel “image” with the pose and camera pa-
rameters of the input image. One key question that may
arise in solving this problem is whether a synthesis model is
capable of rendering multiple scene properties, given that
conventional discriminative models are insufficient. The
great success of neural radiance fields (NeRF) [27] has
shown that the answer to this question is yes – fortunately!
NeRF’s implicit scene representation makes it possible to
extend to other scene properties beyond RGB [60]. More-
over, this scene representation considers multi-view geom-
etry, which is consequently beneficial for all the tasks.

With this insight, we introduce a unified framework



called MuvieNeRF, which leverages Muti-task and cross-
view knowledge so that can simultaneously synthesize mul-
tiple scene properties with a shared implicit scene represen-
tation. The proposed MuvieNeRF can be applied to an ar-
bitrary conditional NeRF architecture and features a unified
decoder architecture with two key modules: cross-view at-
tention (CVA) module and cross-task attention (CTA) mod-
ule. The CVA module leverages and aligns the features
among multiple reference views and the target view to en-
force cross-view consistency. The CTA module explores
relationships among different scene properties, which have
been widely studied but within discriminative models [58,
39] to achieve better performance. Incorporating these two
modules within MuvieNeRF enables effective leveraging of
information from multiple views and across multiple tasks,
leading to improved performance across all tasks.

To demonstrate the efficacy of our approach, we in-
stantiate our MuvieNeRF with a state-of-the-art conditional
NeRF model, GeoNeRF [20], and conduct a comprehensive
evaluation on both synthetic and real-world benchmarks.
Our results show that MuvieNeRF is capable of solving the
MTVS task, and even outperforms several competitive dis-
criminative models in different settings.

2. Method

We describe our novel multi-task view synthesis setting
and the proposed MuvieNeRF (as shown in Figure 2) in this
section.

2.1. Multi-task View Synthesis Set-up

Different from conventional multi-task learning settings,
our goal is to jointly synthesize multiple scene properties
including RGB images from novel views. Therefore, we
aim to learn a model Φ which takes a set of V source-view
annotations with camera poses as a reference, and predicts
the annotations for a novel view given camera pose:

YT = Φ
(
{(Yi,Pi)}Vi=1 ,PT

)
, (1)

where Y =
[
x,y1, · · · ,yK

]
denotes RGB images x and K

other multi-task annotations {yj}Kj=1. Pi is the ith source
camera pose, and PT is the target camera pose.

We evaluate the model Φ in the scene level as it requires
a few paired annotations from the same scene (see Equa-
tion 1). However, Φ is supposed to learn the implicit scene
representation during training as well so that it is able to
generalize to novel scenes that are not seen during training.
Thus, our proposed MuvieNeRF is built upon conditional
NeRF backbones. Conditional NeRFs [61, 56, 20, 42] learn
scene representation across multiple scenes during training
and are capable of generalizing to novel scenes.

2.2. MuvieNeRF

As demonstrated by Figure 2, MuvieNeRF first fetches
the scene representation fscene from the conditional
NeRF encoder, then predicts multiple scene properties[
xq,y

1
q , · · · ,yK

q

]
for arbitrary 3D coordinate q. We illus-

trate how to predict multiple scene properties with fscene
and source annotations {(Yi,Pi)}Vi=1 as follows.

2.2.1 Cross-view Attention Module

The cross-view attention (CVA) module (Figure 2 bottom
left) leverages the multi-view information for MuvieNeRF.
To start, we first concatenate the fscene with a positional
embedding derived from the target ray and the source-view
image plane: fpos

scene = [fscene; γ(θn,v)], where γ(·) is the
sinusoidal positional encoding proposed in [27], and θn,v is
the angle between the novel camera ray r and the line that
connects the camera center of view v and the point qn in the
novel ray, which measures the similarity between the source
view v and the target view.

Next, α Cross-View Attention modules are used to
leverage the cross-view information. Concretely, in each
module, we have one self-attention union followed by a
multi-layer perceptron (MLP): fCVA = MLPCVA(f

pos
scene +

MHA(fpos
scene, f

pos
scene)), where MHA(a, b) denotes multi-

head attention [46] with a as query and b as key and value.
After these processes, we apply K different MLPs to

broadcast the shared feature to K downstream tasks, lead-
ing to the K-branch feature ftask ∈ RK×V×c′ .

2.2.2 Cross-task Attention Module

In order to simultaneously benefit all the downstream tasks,
we propose a novel cross-task attention (CTA) module (Fig-
ure 2 bottom right) to facilitate knowledge sharing and in-
formation flow among all the tasks. The CTA module
has two attention components with shared learnable task
prompts [54], pt ∈ RK×ct . The first attention component
applies cross-attention between features from each branch
and the task prompts fs1 = ftask+MHA(ftask, pt). In this
stage, we run K MHA individually for each task branch
with the shared task prompts. After the cross-attention, we
further concatenate f j

s1 for task Tj and the corresponding
task prompt pjt to obtain fs1′ .

Next, we apply the second component to use β self-
attention modules for all the branches jointly to leverage
the cross-task features. The final feature representation is
obtained by: fs2 = MLPCTA(fs1′ +MHA(fs1′ , fs1′)).

Finally, to predict the annotations of the target view, we
adopt the formulation of GeoNeRF [20]. The prediction ŷj

of task Tj on the target view is the weighted sum of the
source views:

ŷj =

V∑
i=1

w[j, i] · y[j, i], (2)
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Figure 2. Model architecture. MuvieNeRF is a unified framework for multi-task view synthesis equipped with Cross-View Attention (CVA)
and Cross-Task Attention (CTA) modules. It predicts multiple scene properties for arbitrary 3D coordinates with nearby-view annotations.

where the matrix y is made of input view annotations
{Yi}Vi=1 and w is obtained by an additional MLP layer
which processes fs2.

2.2.3 Optimization

For the set of K tasks T = {T1, T2, · · · , TK} including the
RGB colors, we apply their objectives individually and the
final objective is formulated as LMT =

∑
Tj∈T λTjLTj ,

where λTj is the weight for the corresponding task Tj . For
each task, LTj

is formulated as:

LTj
=

∑
r∈R

Lj(ŷ
j(r),yj(r)), (3)

where yj(r), ŷj(r) are the ground-truth and prediction for
a single pixel regarding task Tj . R is the set of rays r in
each batch. Lj is chosen from L1 loss, L2 loss, and cross-
entropy loss according to the characteristics of the tasks.

3. Experimental Evaluation
We show the quantitative and qualitative results, and

comparison to conventional discriminative models in this
section.

3.1. Experimental Setting

Set up. For the main evaluation, we instantiate our model
with state-of-the-art GeoNeRF [20]. We set α = 4 and
β = 2 for the number of self-attention unions in the CVA
and CTA modules. We pick six representative tasks for
evaluation: Surface Normal Prediction (SN), Shading Es-
timation (SH), Edges Detection (ED), Keypoints Detection
(KP), Semantic Labeling (SL), together with the RGB syn-
thesis.

Benchmarks: We take two benchmarks for our main eval-
uation. For Replica dataset [40], we manage to collect 22
scene sequences each containing 50 frames at a resolution
of 640 × 480. For SceneNet RGB-D dataset [26], we in-
clude 32 scenes with 40 frames of each at a resolution of
320× 240 in our evaluation.

For the Replica dataset, we divide the 22 scenes into 18,
1, and 3 for training, validation, and testing, respectively.
For SceneNet RGB-D, we split 26 scenes for training, 2 for
validation, and 4 for testing. For each scene, we hold out ev-
ery 8 frames as testing views. For these held-out views, we
provide two types of evaluations: Training scene evaluation
is conducted on novel views from the training scenes; Test-
ing scene evaluation is used to evaluate the generalization
capacity of the compared models to novel scenes.
Evaluation Metrics: For RGB synthesis, we measure Peak
Signal-to-Noise Ratio (PSNR) for evaluation. For seman-
tic segmentation, we take mean Intersection-over-Union
(mIoU). For the other tasks, we evaluate the L1 error.
Baselines: We consider synthesis baselines for the main
evaluation. Semantic-NeRF [61] extends NeRF for the se-
mantic segmentation task. We further extend this model the
same way for other tasks, which only considers single-task
learning in a NeRF style. SS-NeRF [60] considers multi-
task learning in a NeRF style, but ignores the cross-view
and cross-task information. We equip both models with the
same GeoNeRF backbone as our model. Following [60],
we also include a Heuristic baseline which estimates the
annotations of the test view by projecting the source labels
from the nearest training view to the target view.

3.2. MuvieNeRF Is Capable of Solving MTVS

We report the average results on the held-out views of
both training and testing scenes in Table 1 and Figure 3. We



Evaluation Type Training scene evaluation Testing scene evaluation
Task RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑) RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)

Replica

Heuristic 29.60 0.0272 0.0482 0.0214 0.0049 0.9325 20.86 0.0395 0.0515 0.0471 0.0097 0.8543
Semantic-NeRF 33.60 0.0211 0.0403 0.0128 0.0037 0.9507 27.08 0.0221 0.0418 0.0212 0.0055 0.9417
SS-NeRF 33.76 0.0212 0.0383 0.0116 0.0035 0.9533 27.22 0.0224 0.0405 0.0196 0.0053 0.9483
MuvieNeRF 34.92 0.0193 0.0345 0.0100 0.0034 0.9582 28.55 0.0201 0.0408 0.0162 0.0051 0.9563

SceneNet
RGB-D

Heuristic 22.66 0.0496 - 0.0521 0.0093 0.8687 22.02 0.0394 - 0.0525 0.0124 0.8917
Semantic-NeRF 28.29 0.0248 - 0.0212 0.0050 0.9152 28.85 0.0186 - 0.0198 0.0051 0.9417
SS-NeRF 28.93 0.0244 - 0.0216 0.0050 0.9175 29.18 0.0182 - 0.0197 0.0052 0.9510
MuvieNeRF 29.29 0.0237 - 0.0207 0.0049 0.9190 29.56 0.0173 - 0.0189 0.0050 0.9556

Table 1. Averaged performance of MuvieNeRF on Replica [40] and SceneNet RGB-D [26] datasets on both training scenes and testing
scenes. Full results with multiple runs are provided in the supplementary, our model consistently outperforms both the single-task Semantic-
NeRF baseline and multi-task SS-NeRF baseline, owing to the proposed CVA and CTA modules.

Model NeRF’s Images (No Tuned) NeRF’s Images (Tuned) GT Images (Upper Bound)
SN (↓) SH (↓) ED (↓) KP (↓) SL (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)

Taskgrouping 0.0568 0.0707 0.0408 0.0089 0.5361 0.0530 0.0677 0.0423 0.0090 0.5590 0.0496 0.0607 0.0298 0.0060 0.6191
MTI-Net 0.0560 0.0636 0.0418 0.0078 0.5440 0.0486 0.0549 0.0389 0.0078 0.6753 0.0422 0.0498 0.0281 0.0050 0.7196
InvPT 0.0479 0.0618 0.0400 0.0091 0.7139 0.0474 0.0587 0.0328 0.0074 0.7084 0.0409 0.0484 0.0282 0.0055 0.8158
Ours 0.0201 0.0408 0.0162 0.0051 0.9563 - - - - - - - - - -

Table 2. Comparison to the discriminative models for the test scenes on Replica [40] dataset. MuvieNeRF clearly beats all the discriminative
models in all three settings, indicating that our model is more capable of both performance and generalizability.

RGB SN ED SL

InvPT

SS-NeRF

MuvieNeRF

Ground Truth

Figure 3. Visual comparisons of our model and baselines. Our
predictions are sharper and more accurate.

have the following observations: First, the simple heuris-
tic baseline has significantly worse performance compared
with other models, showing that our problem setting is
non-trivial. Next, SS-NeRF outperforms Semantic-NeRF
marginally on average, indicating the contribution of multi-
task learning. Finally, our model consistently outperforms
all the baselines, demonstrating that the cross-view and
cross-task information is universally helpful.

3.3. MuvieNeRF Beats Discriminative Models

Though the conventional discriminative models are not
capable of solving the proposed MTVS problem, we do pro-
vide several hybrid settings for comparison.

Hybrid Set-up: The high-level idea is to provide additional
RGB images from novel views to the discriminative models.
We provide three different settings with different choices of
RGB images. (1) We train on GT pairs and evaluate on
novel view images generated by a NeRF (NeRF’s Images
(No Tuned)); (2) We additionally fine-tune the discrimina-
tive models with paired NeRF’s images and corresponding

GT (NeRF’s Images (Tuned)); (3) We evaluate on GT im-
ages from novel views as the performance upper bound (GT
Images (Upper Bound)). For all the settings, we train the
discriminative models on both training and testing scenes
(training views only) to make sure that they get access to
the same number of data as our proposed MuvieNeRF.

We select three representative baselines of different ar-
chitectures: Taskgrouping [39], MTI-Net [45] and In-
vPT [53]. The averaged results are reported in Table 2 and
a visual comparison is shown in Figure 3. Our MuvieNeRF
clearly beats all the discriminative models and it is clear to
find that the discriminative models do not work well for the
MTVS problem, even if after fine-tuning or with ground-
truth images. We think the reason lies in the evaluation of
novel scenes – the generalization capacity of discriminative
models is not as good as our model.

4. Discussions

Limitations: One major limitation of this work is the re-
liance on data. MuvieNeRF requires images from dense
views, while most multi-task benchmarks do not satisfy. To
address this limitation, some techniques enabling NeRF to
learn from sparse views [30, 59] can be applied.

Task Relationships: As discussed in Section 3.2, SH and
KP tasks are working as a role of auxiliary tasks. Fur-
ther comprehensive explorations on the task relationships
and the underlying geometric reasons within our synthesis
framework are interesting directions for future work.

Extension to Other Synthesis Models: The motivation of
this work is that the cross-view geometry and shared knowl-
edge across tasks can facilitate multi-task learning, not only
for discriminative models but for synthesis models as well.
We believe similar strategies can be applied to other formats
of synthesis models for 3D scene representations, such as
point clouds [50] and meshes [15, 22].
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Supplementary Material
In this supplementary material, we first present the re-

lated works of our proposed MTVS problem in Section A.
Then, in Section B we introduce the preliminary of condi-
tional neural radiance fields. Next, in Section C we provide
additional full qualitative results on all the modelled tasks
for the two main datasets Replica and SceneNet RGB-D.

A. Related Work
In this work, we propose a NeRF model which leverages

multi-task and cross-view Info for multi-task view synthesis.
We review the most relevant works in these areas below.
View synthesis aims to generate a target image with an ar-
bitrary camera pose from given source images [44]. There
have been a lot of existing methods, with implicitly or ex-
plicitly multi-view constraints, showing promising results
for this task [38, 55, 50, 29, 2]. Different from these ap-
proaches, we aim to synthesize multiple scene properties
including RGB for novel views.

There is another group of methods aiming to render mul-
tiple annotations for novel views in a first-reconstruction-
then-render manner [12, 17, 22, 11]. Concretely, they first
collect or build the 3D scene representation (e.g. mesh or
point cloud) and then render multiple scene properties with
3D-to-2D projection. Different from these works, we build
implicit 3D scene representation with a NeRF-style model
based on 2D data, which is more computationally efficient.
Moreover, our implicit representation enables the possibil-
ity to further model task relationships while they cannot.
Neural Radiance Fields is originally designed for synthe-
sizing novel-view images with ray tracing and volume ren-
dering technology [27]. Follow-up works [3, 30, 9, 36, 16,
23, 49, 31, 33, 25, 34, 13, 43, 51] further improve the image
quality, optimization, and compositionality. Besides these
works, several approaches [56, 6, 20, 42], namely condi-
tional NeRFs, encode the scene information to enable the
conditional generalization to novel scenes, which are more
satisfied with our setting. Our MuvieNeRF takes the en-
coders from these conditional NeRFs as backbones.

Some works also have paid their attention to synthe-
sizing other properties of scenes [32, 52, 47, 61, 60, 10].
Among them, Semantic-NeRF [61] extends NeRF from
synthesizing RGB images to additionally synthesizing se-
mantic labels. SS-NeRF [60] further generalizes the NeRF
architecture to simultaneously render RGB and different
scene properties with a shared scene representation. [37]
proposes a panoptic 3D volumetric representation for the
joint synthesis of RGB images and panoptic segmentation
for in-the-wild images. Different from them, we tackle the
novel MTVS task and leverage both cross-view and cross-
task information.
Multi-task Learning aims to leverage shared knowledge

across different tasks to achieve optimal performance on
all the tasks. Recent works improve multi-task learn-
ing performance by focusing on better optimization strate-
gies [7, 8, 18, 19, 24, 1, 14] and exploring more efficient
multi-task architectures [21, 41, 48, 4].

B. Preliminary: Conditional Neural Radiance
Fields and Volume Rendering

Neural radiance fields (NeRF) [27] proposes a power-
ful solution of implicit scene representation, and is widely
used in novel view image synthesis. Given the 3D posi-
tion of the point q = (x, y, z) in the scene and 2D view-
ing direction d = (θ, ϕ), NeRF learns a mapping function
(c, σ) = F (q,d) which maps the 5D input (q,d) to RGB
color c = (r, g, b) and density σ.

To enhance the generalizability of NeRF, Conditional
NeRFs [56, 20, 6, 42] learn scene representation across
multiple scenes. They first extract a feature volume W =
E(x) for each input image x of a scene. Next, for an arbi-
trary point q on a camera ray, they are able to retrieve the
corresponding image feature on W by projecting q onto the
image plane with known pose P. We treat the above part as
the conditional NeRF encoder, which will return:

fscene = Fenc({xi,Pi}Vi=1 ,q). (4)

We have fscene ∈ RV×c, which contains the scene represen-
tation from V views. Next, the conditional NeRFs further
learn a decoder (c, σ) = Fdec(q,d, fscene) to predict the
color and density.

Given the color and density of 3D points, NeRF renders
the 2D images by running volume rendering for each pixel
with ray tracing. Every time when rendering a pixel in a cer-
tain view, a ray r(t) = o+ td which origins from the center
o of the camera plane in the direction d is traced. NeRF
randomly samples M points {tm}Mm=1 with color c(tm) and
density σ(tm) between the near boundary tn and far bound-
ary tf . The RGB value of the pixel is given by:

Ĉ(r) =

M∑
m=1

T̂ (tm)α(δmσ(tm))c(tm), (5)

where δm is the distance between two consecutive sampled
points (δm = ∥tm+1 − tm∥), α(d) = 1− exp(−d), and

T̂ (tm) = exp

−
m−1∑
j=1

δjσ(tj)

 (6)

denotes the accumulated transmittance.
The same technique can be used to render an arbitrary

scene property yj by:

Ŷj(r) =

M∑
m=1

T̂ (tm)α(δmσ(tm))yj(tm). (7)
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Figure A. Additional qualitative results on one testing scene in the Replica dataset. Our proposed MuvieNeRF outperforms other methods
with more accurate predictions and sharper boundaries, which demonstrates the effectiveness of the multi-task and cross-view information
modeled by the CTA and CVA modules. Zoom in to better see the comparison.

C. More Visualizations
Full qualitative comparisons for all the compared meth-

ods in the Replica and SceneNet RGB-D datasets are
shown in Figure A-B and Figure C, respectively. Our Mu-
vieNeRF outperforms other methods with clearer and more
accurate contours of the objects in scenes. This is because
MuvieNeRF utilizes the CTA and CVA modules to better
take advantage of the shared knowledge across different
downstream tasks and the cross-view information.
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Figure B. Full results on all scene properties and compared methods of the testing scene shown in Fig. 3. Our proposed MuvieNeRF out-
performs other methods with more accurate predictions and sharper boundaries, which demonstrates the effectiveness of the multi-task and
cross-view information modeled by the CTA and CVA modules. Zoom in to better see the comparison.
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Figure C. Additional qualitative results on one testing scene in the SceneNet RGB-D dataset. Our proposed MuvieNeRF outperforms other
methods, indicating that our model benefits from the multi-task and cross-view information with the designed CTA and CVA modules.
The black regions in the surface normal visualizations are due to the missing depth values in those regions. Zoom in to better see the
comparison.


