
Text to Graphics by Program Synthesis with Error Correction

Ivan Nikitovic
Boston University

in@bu.edu

Trisha Anil
Boston University
tcanil@bu.edu

Showndarya Madhavan
Boston University
shmadhav@bu.edu

Arvind Raghavan
Columbia University
ar4284@columbia.edu

Zad Chin
Harvard University

zadchin@college.harvard.edu

Alexander E. Siemenn
MIT

asiemenn@mit.edu

Saisamrit Surbehera
Columbia University
ss6365@columbia.edu

Yann Hicke
Cornell University
ylh8@cornell.edu

Ed Chien
Boston University
edchien@bu.edu

Ori Kerret
Ven Commerce
ori@ven.com

Tonio Buonassisi
MIT

buonassi@mit.edu

Armando Solar-Lezama
MIT

armando@csail.mit.edu

Iddo Drori
MIT, Columbia University, Boston University
idrori@mit.edu,idrori@cs.columbia.edu

Abstract

Using advanced graphics packages requires domain ex-
pertise and experience. We demonstrate a text-to-graphics
pipeline using GPT models suitable for novice users. Cur-
rent text-to-image methods fail on visual tasks that require
precision or a procedural specification. DALL-E 2 and Sta-
bleDiffusion cannot accomplish precise design, engineer-
ing, or physical simulation tasks. We correctly perform such
tasks by turning them into programming tasks, automati-
cally generating code using graphics libraries and running
the code to render images and animations. Code genera-
tion models often generate errors on complex programs, so
we perform local error correction. Rather than subjectively
evaluating results on a set of prompts, we generate a new
multi-task benchmark of challenge tasks. We demonstrate
the applicability of our approach for precise and procedural
rendering, animations, and physical simulations using di-
verse programming languages and graphics environments.

1. Introduction
Text-to-image methods such as DALL-E 2 [20] and Sta-

bleDiffusion [22] are remarkably effective at producing cre-
ative and novel images that reflect a user prompt. The re-
sults have captured the popular imagination, and artists are
already using these systems as tools in their creative pro-
cess [21]. However, these methods have various failure

modes that disrupt this process. For example, they often
fail to produce precise results and respond appropriately to
specified numeracy, positions, spellings, etc. They also do
not allow for simple compositional changes to the image,
such as modifying the color or styling of a particular ob-
ject without manual marking or outlining. Finally, they may
produce images that defy conventional physics.

We address these particular issues by reframing the prob-
lem as one of graphics code generation. When a scene is
specified at the code level, precision in numerics and posi-
tioning is required, objects are instantiated separately and
specified, and realistic physics models are generated. We
use GPT models [4, 16] to generate Python and JavaScript
code for rendering objects in the Browser and Blender [7]
and leverage program synthesis, allowing for user-guided
edits and automatic error correction. Figures 1 and 2 shows
a schematic of this.

To demonstrate the efficacy of our method, we show
that it outperforms DALL-E 2 and StableDiffusion on tasks
from a recent benchmark designed to test the ability of these
systems to cope with challenging prompts. In summary, our
contributions are listed below:

• We reframe the problem of image generation as one
of graphics code generation, allowing for unparalleled
precision and compositional control over the image
output.

• We leverage program synthesis tools, allowing for au-
tomatic error correction and user-guided modification

Figure 1. The image on the left is rendered by a JavaScript animation using the three.js library [2]. We pass the corresponding source code
to GPT-4, with a prompt to increase the size of the ball, and GPT-4 outputs the modified code. The generated code renders the image on
the right which includes self-reflection in a large ball.

of the code (and thus the scene).

• We demonstrate that our method outperforms the ex-
isting state-of-the-art on a benchmark of challenging
prompts

Lastly, the generative creation of 3D scenes allows for
much broader domains of application that operate in the
realm of 3D output. For example, we expect it to be useful
for architectural, interior, and industrial design applications.

Related Work

There is often thought that humans are generalists,
whereas machines are specialists. However, large lan-
guage models based on transformers such as GPT-3 [3],
Gopher [19], and Palm [6], also called foundation models,
are generalist learners. Leveraging the concurrent develop-
ments in foundation models [3], multimodal learning [18]
for bridging vision and language domains, and diffusion
models for image generation tasks, text-to-image, or text-
conditioned image generation, methods increased their level
of photorealism. Text-to-image models may be roughly
split into two types: autoregressive transformer-based mod-
els [28] and diffusion-based models [24]. Prior state-of-
the-art [1, 11, 12, 23] handles specific limitations of text-to-
image models such as generating an image within context
or modifying object attributes automatically. Text-to-image
models are commonly evaluated by the Inception Score (IS)
and the Fréchet Inception Distance (FID). Both of these
metrics are based on Inception v3 classifier. These mea-
sures, therefore, are designed for the unconditional setting
and are primarily trained on single-object images. Sev-
eral approaches rectify these shortcomings. A compre-
hensive and quantitative multi-task benchmark for text-to-
image synthesis does not exist that covers a diverse set of
tasks with varying difficulty levels. Imagen [24] introduced
DrawBench, a benchmark with 11 categories with approx-

imately 200 prompts total. Human raters (25 participants)
were asked to choose a better set of generated images from
two models regarding image fidelity and image-text align-
ment. Categories are: colors counting, conflicting, DALL-
E 2, description, misspellings, positional, rare words, Red-
dit, text. DALL-E 2-Eval [5] proposed PaintSkills to test
skills of the generative models — specified object genera-
tion, counting, color, and spatial relations. It utilizes the
Unity engine to test these tasks using predefined sets of ob-
jects, a subset of MS-COCO [15] objects, colors, and spa-
tial relations. Localized Narratives [17] is a multi-modal
image captioning approach that can be adapted to bench-
marking images. Text captions are first generated by human
annotators whose cursor movement and voice commentary
hover their cursor over the image to provide richness and
accuracy. PartiPrompts, a holistic benchmark of 1,600 En-
glish prompts [29], compared to Localized Narratives, is
better in probing model capabilities on open-domain text-
to-image generation. There are several ways to improve the
mathematical reasoning ability of language models: (1) us-
ing chain-of-thought (CoT) prompting [13, 27], (2) using
the top-k ranking solutions [14] and merging them by vot-
ing [26] or least-to-most prompting [30], and (3) using pro-
gram synthesis and few-shot learning to generate code that
answers questions [9]. In this work we use program synthe-
sis and few-shot learning for rendering.

2. Methods

Figure 2 illustrates a schematic of our workflow. To real-
ize ”text to graphics,” two critical components are needed:
(1) the ability to correct errors in code that can arise during
code generation; (2) the ability to edit code and add to code
in response to user prompts. Both features are illustrated
in Figure 2) for the case of a blue cube. On the top row,
the first instance of generated code may not run properly,
requiring error correction and a second rendering attempt.

Step Output
1. Prompt Render a cube in Blender.

Inject restart text bpy.ops. render . render (write still =True)

2. Run Codex in Complete Mode

import bpy
import math
Delete default cube
bpy.data . objects [’Cube’]. select = True
bpy.ops. object . delete ()
Add a new cube
bpy.ops.mesh. primitive cube add (location =(0, 0, 0))
Get the object
cube = bpy. context . object
Set the location
cube. location = (0, 0, 0)
Set the dimensions
cube.dimensions = (1, 1, 1)
Set the rotation
cube. rotation euler = (math. radians (45) , math. radians (45) , math. radians (45))
Set the material
mat = bpy.data . materials .new(name=”MaterialName”)
cube.data . materials .append(mat)
Render the image
bpy. context . scene . render . filepath = ’cube.png’
bpy.ops. render . render (write still =True)

3. Run program, terminates with error
Error : Python: Traceback (most recent call last) :

File ”/Users/develop/ blender /cube.py”, line 5, in <module>
bpy.data . objects [’Cube’]. select = True

AttributeError : ’Object’ object has no attribute ’ select ’

4. Fix error by traceback in Codex Edit Mode Fix [Error from Step 3]

5. Fixed code diff – bpy.data.objects[’Cube’].select = True + bpy.data.objects[’Cube’].select set(True)

6. Run program, correct output rendering

7. Instructions in Codex Edit Mode Make the cube blue.

8. Modified code

import bpy
import math
Delete default cube
bpy.data . objects [’Cube’]. select set (True)
bpy.ops. object . delete ()
Add a new cube
bpy.ops.mesh. primitive cube add (location =(0, 0, 0))
Get the object
cube = bpy. context . object
Set the location
cube. location = (0, 0, 0)
Set the dimensions
cube.dimensions = (1, 1, 1)
Set the rotation
cube. rotation euler = (math. radians (45) , math. radians (45) , math. radians (45))
Set the material
mat = bpy.data . materials .new(name=”MaterialName”)
cube.data . materials .append(mat)
Make the cube blue
mat. diffuse color = (0.0, 0.0, 1.0)
Render the image
bpy. context . scene . render . filepath = ’cube.png’
bpy.ops. render . render (write still =True)
Set the dimensions
cube.dimensions = (1, 1, 1)
Set the rotation
cube. rotation euler = (math. radians (45) , math. radians (45) , math. radians (45))
Set the material
mat = bpy.data . materials .new(name=”MaterialName”)
cube.data . materials .append(mat)
Render the image
bpy. context . scene . render . filepath = ’cube.png’
bpy.ops. render . render (write still =True)

9. Run program, terminates with error
Error : Python: Traceback (most recent call last) :

File ”/Users/develop/ blender /cube−blue.py”, line 32, in <module>
mat. diffuse color = (0.0, 0.0, 1.0)

ValueError : bpy struct : item. attr = val : sequences of dimension 0 should contain 4 items , not 3

10. Fix error using traceback in Codex Edit Mode Fix [Error from Step 9]

11. Fixed code diff – mat.diffuse color = (0.0, 0.0, 1.0) + mat.diffuse color = (0.0, 0.0, 1.0, 1.0)

12. Run program, correct output rendering

Table 1. We present an iterative method for image generation, via code generation. The method takes in a user prompt, with an appropriate
prefix (like “A Blender rendering of. . . ”), and produces code that generates an image. In the example above, the system generates Python
code for a rendering of a cube with Blender. The resultant code may fail in one of two ways: (1) it may fail to compile, or (2) it may fail
to match the user’s expectations. In the first case, we can automatically pass it back into Codex along with the prompt “Fix” and the error
traceback from the compiler, and the technical errors will be ironed out. In the second case, the user may specify a fix or modification
prompt and feed it into Codex to try and bring the output image closer to their expectations. In our example, the user has decided to make
the cube blue, and the suggested prompt makes this desired modification. This iterative process allows users to easily produce images that
are precisely specified and match their desired initial prompts. Performance on our benchmark demonstrates the efficacy of the approach.

On the bottom row, a user prompt to change the cube color
results in changes in the code that achieve the desired mod-
ified rendering.

Our study is motivated by: (1) the ability of a creative
person without a computer-aided design background to gen-
erate a precise rendering of an object, matching their text
prompt; (2) an investigation into the limits of current text-
to-image models to accomplish (1). We observe that cur-
rent text-to-image algorithms struggle for tasks requiring
precision, counting, specific geometric shapes, and sequen-
tial modifications of an existing object. To overcome these
limitations, we leverage text-to-code to add a measure of
precision to the creative process, allowing precise numbers,
shapes, and objects while preserving the creative flexibility
of text-to-image prompts. The precision enabled by code af-
fords three distinct classes of the image to be generated: (1)
instances where specific shapes are required; (2) instances
where specific numbers of objects are needed; (3) instances
where a pre-existing object or code rubric is modified inten-
tionally, for example, to create a time-series of objects re-
sponding to an applied force in a physics-based simulation,
or sequential modifications to an object to add complexity
or modify it according to user specifications.

3. Results

3.1. Text to Graphics

We prompted GPT-4 to create an animated Rubik’s cube
using SVG in JavaScript. Running the generated code ren-
dered a 3-D colored Rubik’s cube with rotation function-
ality. Next, we gave GPT-4 input to create an animated
model of the Earth with continents and oceans using a tex-
ture loaded locally. Running the generated code rendered
a 3-D model of the Earth rotating on its axis, using a tex-
ture loaded from local files. Since vanilla JavaScript lacks
the functionality to support complex graphics, we prompted
GPT-4 to use the Three.js library and modify a complex
scene. Figure 1 demonstrates GPT-4’s ability to understand
over 250 lines of complex graphics code and correctly mod-
ify the code to increase the size of the mirror ball.

3.2. Error Correction and Modification

We take the Cornell box, and modify it according to user
prompts. We illustrate seven examples out of 100 attempts
in Figure 3. We evaluate the success of our workflow in two
different ways: (1) whether the image was correctly mod-
ified according to our instructions; (2) whether the image-
generation code compiled on the first iteration. The results
for (1) are shown in Table 2, indicating a 65% success rate.
91% of the generated codes compiled with error correction.
A key take-away, is that this workflow has a high success
rate modifying objects within 3D renderings.

3.3. Procedural Rendering

We explore the creation of a three-dimensional object
using recursion. Three different algorithms are compared:
Stable Diffusion, DALL·E 2, and our rendering algorithm.
The results are shown in Figure 4, with a prompt for the
fractal tetrahedron. In Figure 4(d), we prompt our algorithm
to change the object’s color and background. The alignment
between Figures 4(c) and 4(d) and the original text prompt
(a fractal tetrahedron) is self-evident.

As a third example, we consider the task of procedural
rendering, which is nearly impossible to accomplish using
stable diffusion and DALL·E 2. Procedural rendering con-
sists of progressive modification of an existing object, in-
creasing the level of detail and complexity with each render-
ing. Figure 5 illustrates three spaceships created in blender
using procedural rendering. In the case of trees, only the pa-
rameters were modified; here, the code and the parameters
are modified to achieve the diversity of spaceships shown.

3.4. Precise Rendering

We render a precise number of objects. A common short-
coming of Stable Diffusion and DALL·E 2, is the inability
to render a precise number of objects when prompted by a
user. In this case, we illustrate using a bouquet of a precise
number of Phyllotaxis flowers. As shown in 6, both Stable
Diffusion and DALL·E 2 generate more flowers than the
user prompt. As a further illustration of the ability to mod-
ify images, once rendered, Figure 6(d) shows the change of
the flower color from yellow to red.

3.5. Parametric Rendering

We consider the case of code rendering a system of
parametric equations describing a torus. In Figure 7, we
attempted to run an outdated Blender code (describing a
torus) on the latest blender version, resulting in an error.
The error correction feature in our workflow corrected this
error and produced the proper rendering of the torus. We
then used the text prompt to add a cylinder in the center of
the torus; the result is shown in Figure 7(f). These results
from our workflow are compared to text prompts of a ”para-
metric torus” in Stable Diffusion and DALL·E 2, with and
without the cylinder in the middle.

As a sixth example shown in Figure 8, we illustrate the
ability of our workflow to render a new genus of trees based
on a set of variables and rules describing trees. Our training
set consists of a dataset of 14 trees, available on GitHub 1.
These 14 trees are each created by the same 34 lines of code
but with different variables (90 in total). After training our
workflow on the 14 examples of a tree (few-shot learning),
we issue the text prompt for ”Sequoia.” Program synthesis

1https://github.com/friggog/tree-gen

Figure 2. Rendering program synthesis with automatic error correction workflow. A user prompts Codex to generate a Blender rendering,
generating an image synthesis program. At zero shot, this rendering program generated by Codex may succeed or fail due to error. If
the program succeeds, the loop ends. If the program fails, the error traceback is fed back into Codex edit mode with the prompt to ”fix”
the error. This error correcting loop automatically repeats until all errors are corrected and a rendering is successfully output. Once the
rendering is successful, the user may modify output further, e.g., change the object’s color. This user-modification triggers the program
synthesis and error self correcting subroutines iteratively until the new modification of the rendering is successfully output.

Category Score
Runs and renders correct content 66/100

Runs and renders incorrect content 25/100
Does not run and ends with an error 9/100

Table 2. We render the Cornell box using OpenGL by program synthesis a hundred times, each time performing a single modification. We
tally the number of programs that run, render the correct output, and those that do not run.

creates the corresponding code and variables, which result
in Figure 8(e).

3.6. Rendering Material Synthesis

We demonstrate the modification of an object’s material
constitution according to a text prompt. Figure 9 illustrates
the original rendering in (a), and modified images in (b),
(c) and (d). Note the changes of transmissivity, diffuse and
specular reflectance, shading, and color.

3.7. Physical Simulation

We consider modifying a time series of a physics-based
simulation comprising many interacting small bodies. Fig-
ure 10 shows the original simulation in the top row, consist-
ing of a stack of cubes that are then released and allowed to
interact and collide. The bottom row shows a modification
created using a text prompt and our workflow. The prompt
instructs our workflow to modify the simulation as follows:
reduce the edge of the cube stack by half and increase grav-
itational acceleration by 3x. Representative screenshots of

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Cornell box: (a) Original rendering of Cornell box (orig-
inal). (b) Prompt: Remove the cube (correct). (c) Prompt: Replace
cube with sphere (correct). (d) Prompt: Change the sphere color
to green (correct). (e) Prompt: Shift the sphere up and forward
(correct). (f) Prompt: Add another white sphere above the cube
(incorrect). (g) Prompt: Insert a cuboid (incorrect). (h) Prompt:
Change the sphere to a triangular pyramid (incorrect).

(a) (b) (c) (d)

Figure 4. Fractal. Procedural recursive result: A fractal tetrahe-
dron generated by (a) Stable Diffusion (Prompt: a fractal tetrahe-
dron), (b) DALL-E 2 (Prompt: a fractal tetrahedron), (c) Render-
ing of original Blender code (d) Program synthesis edit (Prompt:
change tetrahedron and background colors).

(a) (b) (c)

Figure 5. Spaceships. Procedural rendering of spaceships using
Blender.

(a) (b) (c) (d)

Figure 6. Flowers. A precise number of objects: 24 Phyllotaxis
flowers generated by (a) Stable Diffusion (Prompt: 24 phyllotaxis
flowers), (b) DALL-E 2 (Prompt: 24 phyllotaxis flowers), (c) Pro-
gram synthesis edit (Correction: fix error trace) (d) Program syn-
thesis edit (Prompt: change flower color).

(a) (b) (c)

(d) (e) (f)

Figure 7. Parametric rendering. A parametric object and adding
an object: a parametric torus generated by (a) Stable Diffusion, (b)
DALL-E 2, (c) Program synthesis with error correction. Adding
a cylinder in the middle (d) Stable Diffusion, (e) DALL-E 2, (f)
Program synthesis.

the resulting time-series of the interacting bodies is shown
on the bottom row.

3.8. Graphics Stories

We illustrate our workflow by generating a thousand
results, which ties together the numerous advantages de-
scribed in the text’s main body— precision, procedural evo-
lution, and error correction. We write a script that allows
us to create a meta-language. This meta-language gener-
ates 1,000 simple graphic stories. Each graphic story has
2–5 prompts that specify changes to the last 3D scene. Ex-
amples of prompts are ”add a green pentagrammic prism,”
”Add a bright hexagonal pyramid,” ”Move green penta-
grammic prism (6,7) inches left”, ”rotate green pentagram-
mic prism 150 degrees counter-clockwise”, ”scale creen
gentagrammic prism by 0.5”. Each graphic story builds to-
ward the final 3D scene by sequentially following the in-
structions from the 2–5 prompts. We use each prompt to
generate code and, in turn, execute each code which results
in a rendered image or an error trace. If there is an error
trace, then the program and the error trace are fed back into
program synthesis for error correction using the prefix ”fix
the error.” Table 3 summarizes the statistics of the 1,000
story runs.

3.9. Photorealistic Driving Simulation

We modify the CARLA driving simulator [8], which
runs on top of the Unreal 5 Engine [10] and is controlled by
Python scripts. We use text-2-graphics program synthesis
to modify traffic and environmental conditions. Figure 11a
shows a rendered base image of traffic in a street. Given the

(a)

(b)

(c)

(d)

(e)

Figure 8. Parametric trees generated using few-shot learning of parameters: Procedural rendering of trees (a) Apple. (b) Willow. (c) Palm.
(d) Cambridge Oak, and (e) Program synthesis generating the parameters of a Sequoia tree.

(a) (b)

(c) (d)

Figure 9. Rendering materials synthesis. (a) Rendering of origi-
nal code: Glass, gold, blue, (b) Program synthesis: Paper, leather,
stone, (c) Program synthesis: Emerald, sapphire, ruby, (d) Pro-
gram synthesis: Concrete, china, diamond.

prompt ’Make all the vehicles red.” our approach modifies
Python scripts that control the simulator and renders the im-
age shown in Figure 11b so that all vehicles are red. Notice
that the graphics simulation continues to run in time; there-
fore, the red vehicles have different positions in a future
time frame. Figures 12a and 12b demonstrate an additional
text-2-graphics result. The top figure shows a base traffic
image rendered using CARLA simulator on top of the Un-
real 5 engine. The bottom image shows the result of text-2-
graphics program synthesis given the prompt ”Always have
storm weather with 100% cloudy and 100% rainy.”

We demonstrate text-2-graphics’ precision, error correc-
tion, and procedural capabilities with over 1,000 results and
detailed statistics.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Physical simulation: (a-d) Original simulation (e-h)
Program synthesis edit: reduce the edge of the cube stack by half
and increase gravity three fold.

3.10. Text to Photorealistic Avatars

We use structured prompts for generating a notes from
questions and answers in a Machine Learning class. We
generate a list of relevant topics in the course, by automat-
ically synthesizing a prompt by sampling the questions and
solutions from the problem sets, midterm exams, and final
exams of the course. Each of these topics comprises a chap-
ter in lecture notes. We use ChatGPT to turn sections into
video scripts with facial gestures that drive a photo-realistic
graphics avatar [25] as shown in Figure 13.

Category Score
Rendered image 91%
Rendered image and satisfied correct user intent 63%
Did not render image 13%
Did not render but fixed by error correction 4%
Did not render and not fixed by error correction 9%

Table 3. Statistics of 1,000 text-2-graphics story results. Each
story consists of 2-5 prompts. 91% of the synthesized programs
generated rendered an image. 63% rendered an image matching
the user intent. 13% did not render image and running the synthe-
sized grahics program resulted in an error. 4% of these cases the
program did not render but was fixed by automatic error correc-
tion. In 9% of the cases the code did not render an image and not
fixed by error correction.

(a)

(b)

Figure 11. (a) Base traffic image rendered using CARLA simula-
tor on top of Unreal 5 engine. (b) Text-2-graphics program syn-
thesis given the prompt ”Make all vehicles red.” Notice that the
graphics simulation continues to run in time; therefore, the red ve-
hicles have different positions in a future time frame.

4. Conclusions

In this work, we explored the limitations of text-to-image
models by creating a new multi-task benchmark with three
difficulty levels. We then found tasks on which Stable
Diffusion and DALLE-2 failed and provided an alterna-
tive in program synthesis. We noticed that program syn-
thesis might generate programs with errors and performed
automatic error correction using trace and program synthe-
sis. Next, we evaluated the ability of program synthesis to

(a)

(b)

Figure 12. (a) Base weather image rendered using CARLA simu-
lator on top of Unreal 5 engine. (b) Text-2-graphics program syn-
thesis given the prompt ”Always have storm weather with 100%
cloudy and 100% rainy.”

Figure 13. Rendering of an avatar given an automatically gener-
ated video script of a lecture generated using ChatGPT.

modify running programs according to human intent. We
demonstrate that 91% of a hundred modifications on the
Cornell box render and 66% align with human intent. Fi-
nally, we demonstrate the advantages of program synthesis
with error correction for text-to-graphics tasks that require
precision, involve procedural renderings, and physical sim-
ulation. We can feed text-to-graphics outputs into text-to-
image models for conditional image generation. Text-to-
graphics allows to render virtual worlds and learn by inter-
acting with an environment.

References
[1] Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kas-

ten, and Tali Dekel. Text2live: Text-driven layered image
and video editing. arXiv preprint arXiv:2204.02491, 2022.
2

[2] Brian Danchilla . Three.js framework. 2

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 2

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Hen-
rique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evalu-
ating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021. 1

[5] Jaemin Cho, Abhay Zala, and Mohit Bansal. Dall-eval:
Probing the reasoning skills and social biases of text-to-
image generative transformers. 2022. 2

[6] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. PaLM: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311, 2022. 2

[7] Blender Online Community. Blender - a 3d modelling and
rendering package, 2018. 1

[8] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Conference on
Robot Learning, pages 1–16, 2017. 6

[9] Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard Tang,
Albert Lu, Elizabeth Ke, Kevin Liu, Linda Chen, Sunny
Tran, Newman Cheng, Roman Wang, Nikhil Singh, Tay-
lor L. Patti, Jayson Lynch, Avi Shporer, Nakul Verma, Eu-
gene Wu, and Gilbert Strang. A neural network solves, ex-
plains, and generates university math problems by program
synthesis and few-shot learning at human level. Proceedings
of the National Academy of Sciences, 119(32), 2022. 2

[10] Epic Games. Unreal engine 5. 6

[11] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patash-
nik, Amit H Bermano, Gal Chechik, and Daniel Cohen-
Or. An image is worth one word: Personalizing text-to-
image generation using textual inversion. arXiv preprint
arXiv:2208.01618, 2022. 2

[12] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022. 2

[13] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka
Matsuo, and Yusuke Iwasawa. Large language models are
zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.
2

[14] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Ju-
lian Schrittwieser, Rémi Leblond, Tom Eccles, James Keel-
ing, Felix Gimeno, Agustin Dal Lago, et al. Competition-
level code generation with alphacode. arXiv preprint
arXiv:2203.07814, 2022. 2

[15] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In David J. Fleet, Tomás Pajdla, Bernt Schiele, and
Tinne Tuytelaars, editors, Computer Vision - ECCV 2014 -
13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V, volume 8693 of Lecture
Notes in Computer Science, pages 740–755. Springer, 2014.
2

[16] OpenAI. GPT-4 technical report, 2023. 1

[17] Jordi Pont-Tuset, Jasper R. R. Uijlings, Soravit Changpinyo,
Radu Soricut, and Vittorio Ferrari. Connecting vision and
language with localized narratives. CoRR, abs/1912.03098,
2019. 2

[18] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. Image, 2:T2, 2021. 2

[19] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Milli-
can, Jordan Hoffmann, Francis Song, John Aslanides, Sarah
Henderson, Roman Ring, Susannah Young, et al. Scaling
language models: Methods, analysis & insights from train-
ing gopher. arXiv preprint arXiv:2112.11446, 2021. 2

[20] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 1

[21] Nicolás Rivero. The best examples of dall-e 2’s strange,
beautiful ai art. Quartz. 1

[22] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 1

[23] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. DreamBooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. arXiv preprint arXiv:2208.12242, 2022. 2

[24] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 2

[25] Synthesia. Avatars. https://www.synthesia.io/,
2023. 7

[26] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. Self-consistency improves chain

https://www.synthesia.io/

of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022. 2

[27] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of thought
prompting elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903, 2022. 2

[28] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, Burcu Karagol Ayan, et al. Scaling autoregres-
sive models for content-rich text-to-image generation. arXiv
preprint arXiv:2206.10789, 2022. 2

[29] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han,
Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge, and
Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation, 2022. 2

[30] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan
Scales, Xuezhi Wang, Dale Schuurmans, Olivier Bousquet,
Quoc Le, and Ed Chi. Least-to-most prompting enables com-
plex reasoning in large language models. arXiv preprint
arXiv:2205.10625, 2022. 2

	. Introduction
	. Methods
	. Results
	. Text to Graphics
	. Error Correction and Modification
	. Procedural Rendering
	. Precise Rendering
	. Parametric Rendering
	. Rendering Material Synthesis
	. Physical Simulation
	. Graphics Stories
	. Photorealistic Driving Simulation
	. Text to Photorealistic Avatars

	. Conclusions

