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Abstract

Score-based generative models have emerged as state-of-
the-art generative models for both conditional and uncon-
ditional generation. In this paper, we propose and evalu-
ate a framework for semi-supervised training of (classifier-
guided) conditional score-models: more specifically, the
training data consists of fewer labeled examples along with
several unlabeled examples. We consider the following
semi-supervised learning settings: a) classical multi-class
semi-supervised learning setting wherein the labeled dataset
consists of a few examples from each class; b) the binary
positive-unlabeled learning setting wherein a few examples
from the positive class are labeled and the unlabeled exam-
ples are a mix of positive and negative examples. We describe
how the pretrained unconditional score-model can be used
for label-efficient training of the classifier. We demonstrate
that the resulting model can be used both as a conditional
generative model as well as a classifier.

1. Introduction
Score Models are unnormalized probabilistic models that

model the probability density in terms of its score function
– that is, the gradient of the log-likelihood. Score models
are advantageous as compared to contemporary generative
models such as GANs, VAEs, Autoregressive Models and
Normalizing Flows as they require neither adversarial opti-
mization nor restricted architecture families, while achiev-
ing state-of-the-art performance across multiple modalities.
Score models can be trained using any score-matching ob-
jective such as the implicit score-matching [11], the sliced
score-matching [24] or the denoising score-matching [27]
methods.

In this work, we build upon Song et al. [25] which uses the
denoising score-matching objective. As described in Section
2.2, class-conditional score-models can either be constructed

using a pre-trained unconditional score-model by training
a classifier separately, or the class-conditional score-model
can be learnt directly with class-conditioning as input; these
are referred to as classifier-guided and classifier-free models
respectively. In this work, we use classifier-guided score
models as this allows us to reuse a pre-trained larger score-
model while training a smaller classifier-model: for example,
Song et al. [25] generate class-conditional CIFAR10 exam-
ples using a score-model having 107M parameters and a
classifier-model having 1.5M parameters.

In this paper, we propose a framework for semi-
supervised training of classifier-guided conditional score-
models: more specifically, the training data consists of a
largely unlabelled dataset, along with a relatively small num-
ber of labelled examples. We consider the following semi-
supervised learning settings: (a) classical multi-class semi-
supervised learning wherein the labeled dataset consists of
a few examples from each class, and (b) binary positive-
unlabeled learning in which a few examples from the posi-
tive class are labeled and the unlabeled examples are a mix
of positive and negative examples The final model can be
used both as a classifier and a generative model.

2. Background

2.1. Unconditional Score-based SDE models

Score models are probabilistic models of the data that en-
able sampling and exact inference of log-likelihoods. Song
et al. [25] propose a framework generalizing Multi-scale
score matching [22, 23] and Denoising Diffusion Probabilis-
tic Models [10]. Concretely, the framework consists of two
components: 1) the forward-diffusion (i.e., data to noise)
stochastic process, and 2) a learnable score-function that can
then be used for the reverse-diffusion (i.e., noise to data)
stochastic process.

The forward diffusion stochastic process {x(t)}t∈[0,T ],
which starts at data and ends at a tractable noise distribution



such that the noise x(T ) is independent of data x(0), is
defined with a stochastic-differential-equation (SDE) of the
following form

dx = f(x, t) dt+ g(t) dw, (1)

where w denotes a standard Wiener process. The drift co-
efficient f(x, t) and diffusion coefficient g(t) are usually
manually specified without learnable parameters such that
we can obtain closed-form solutions to the forward-diffusion
SDE. For example, if f is linear in x, the solution to the SDE
is a gaussian distribution whose mean µ(t) and standard
deviation σ(t) can be exactly computed. We use pt(x|x0)
to denote the probability density function of x(t) when the
diffusion is seeded at x0, and we denote the marginal proba-
bility density function of x(t) by pt(x).

In order to generate samples from p0(x) starting with
samples from pT (x), we have to solve the following reverse
diffusion SDE [2]:

dx = [f(x, t)− g(t)2∇x log pt(x)] dt+ g(t) dw̄, (2)

where dw̄ is a standard Wiener process when time flows
from T to 0, and dt is an infinitesimal negative timestep.
In practice, the score function ∇x log pt(x) is estimated
by a neural network sθ(x, t) that is trained to optimize the
following score-matching loss:∫ T

0

Ex∼pt(x)[λ(t)||∇x log pt(x)− sθ(x, t)||22]dt (3)

where λ(t) is a positive real number introduced to bal-
ance out the score-matching objective across various time
steps. Using samples from the training dataset, we can de-
fine an empirical density function for t = 0 as p0(x) =
1
N

∑
xi∈pdata

δ(x− xi) and then obtain samples from pt(x)
by first sampling x(0) ∼ p0 and then solving the forward-
diffusion SDE (Eq. 1). If the solution to the SDE is a
Gaussian distribution whose means and covariances can be
determined in a closed-form, we can empirically define pt(x)
as a mixture of N gaussians; for such SDE’s, we can also
estimate the score-function∇x log pt(x) in the closed-form
for evaluating the score-matching loss: this is usually re-
ferred to as denoising score matching as the score-function
points in the denoising direction.

2.2. Class-Conditional Score-based SDE models

Given a data distribution whose samples can be classified
into C classes, class-conditional score-models are trained to
estimate∇x log p(x, t|y) where y ∈ [1, C] is the class label.
Classifier-free conditional models directly learn sθ(x, t|y)
by taking y as an additional input. On the other hand,
Classifier-guided conditional models learn the probability
distribution p(y|x, t) using a classifier and then combine
this with the learnt unconditional score (i.e., sθ(x, t)) using

Bayes rule: p(x, t|y) = p(y|x,t)p(x,t)
p(y) : applying log on both

sides and taking the derivative with respect to x, we get

sΘ(x, t|y) = ∇x log pφ(y|x, t) + sθ(x, t) (4)

where φ denotes the parameters of the classifier and Θ =
{θ, φ}. Song et al. [25] suggest a simple sum of the cross-
entropy losses sampled at different scales for training the
classifier pφ:

LCE = E t∼U(0,T )
(x0,y)∼p0(x)
x∼pt(x|x0)

[− log pφ(y|x, t)] (5)

However, subsequent studies such as [7] have identified that
the score sΘ(x, t|y) does not yield good conditional samples
and propose scaling up the classifier gradient in order to
produce higher fidelity samples at the cost of diversity. Chao
et al. [5] refer to this as the score-mismatch issue and instead
suggest adding the following Denoising Likelihood Score
Matching (DLSM) term to the classifier training:

LDLSM = E t∼U(0,T )
(x0,y)∼p0(x)
x∼pt(x|x0)

[λ(t)||∇x log pt(x|y)− sΘ(x, t|y)||22]

(6)
In this work, we follow [5] and use the sum of cross-entropy
loss LTotal = LCE + LDLSM for training the classifier pφ.

2.3. Semi-Supervised Learning

Semi-supervised learning aims to train machine learn-
ing models by using a predominantly unlabelled training
set, where only a small proportion of the data are labeled.
The general strategy in semi-supervised learning is to boot-
strap the learning process using labeled data and to then use
unlabeled data along with their label guesses as additional
labeled training samples; in order to prevent overfitting, the
training is often accompanied by regularization and data
augmentations wherever applicable. Semi-supervised learn-
ing algorithms for generative models and classifier models
usually differ due to the architecture constraints (e.g., in-
vertibility in Normalizing Flows) and loss-objectives (e.g.,
Adversarial Loss for GANs, ELBO Loss for VAEs). In
classifier-guided score models, however, the training objec-
tive is almost identical to training a classifier and we briefly
review state-of-the-art semi-supervised methods for train-
ing classifiers in the Supplementary Material. In summary,
current top-performing semi-supervised methods like Mix-
Match [4], UDA [28] and FixMatch [21] for classifiers derive
their improvements using MixUp augmentation or strong
augmentations for training; however, using strongly aug-
mented or mixed-up images as input to the classifier model
for computing the classification and score-matching objec-
tive would cause the model to learn to generate from the
distribution of strongly-augmented images instead of clean
images.



Figure 1. The upper row of images shows the progression of noisy samples obtained through the forward diffusion process. Each image in
the second (lower) row shows the result of applying one step of denoising (guided by the score network) to the image directly above it.
Two loss terms, both applied as an L2 distance penalty at the penultimate layer, help the classifier’s representation learning from a set of
combined labeled and unlabeled examples: (1) Denoising Consistency encourages both of these images to have a similar representation. (2)
Temporal Consistency encourages images that are close in diffusion time (i.e. in noise level) to have a similar representation. Taken together,
the temporal and denoising consistency losses effectively propagate information across all noise scales and their corresponding denoised
samples, thus reconciling the learned representations.

2.4. Semi-Supervised Generative Nets

Kingma et al. [13] represents one of the early works
on semi-supervised training of joint classifier and gener-
ative models with a Variational Autoencoder. FlowGMM
is an elegant method for training Normalizing Flows in a
semi-supervised setting wherein they propose to maximize
marginal likelihoods for unlabeled data and maximize class-
conditional likelihoods for labeled data. D2C [20], Diffusion-
AE [18], and FSDM [9] represent some of the recent efforts
on few-shot diffusion models. D2C is a latent-variable con-
ditioned decoder whereas Diffusion-AE is a latent-variable
conditioned Diffusion model: in order to introduce class-
conditioning, these models train a classifier using the frozen
latent-representations and use rejection-sampling for class-
conditional generation. Similar to Diffusion-AE, FSDM
is a latent-variable conditioned diffusion model that uses
Vision Transformer to encode a set of images into a condi-
tioning vector. While FSDM does not support inference of
classes on test examples, the classification accuracy in D2C
and Diffusion-AE is limited as the latent-variable encoder is
frozen and cannot be fine-tuned without retraining the entire
pipeline. In contrast, we use a vanilla diffusion model with a
flexible classifier architecture to introduce conditioning.

3. Semi-supervised Conditional Score Models

In this section, we describe our framework for learning
Conditional Score Models with partial supervision. We con-
sider two main settings of partial supervision: the classical
semi-supervised learning setting and the positive-unlabeled
learning setting. In the classical semi-supervised learning
setting, the training data consists of labeled and unlabeled
examples, wherein the labeled examples consists of a few
samples from each class. On the other hand, the positive-

unlabeled learning setting involves learning a binary clas-
sifier trained on labeled positive samples, together with an
unlabeled training set containing samples from both posi-
tive and negative classes. Typically, a positive-unlabeled
learning problem is solved in two steps: a) estimating the
proportions of positive and negative classes— this is known
as the mixture proportion estimation step; and b) training
a binary classifier using this information. In this work, we
follow previous work (e.g., Acharya et al. [1]) and primarily
focus on training a binary classifier assuming that the mix-
ture proportion estimation step has already been performed
and the class prior is known.

Consider a time-conditional classifier network pφ :
RD+1 → RC that takes x ∈ RD and t ∈ [0, T ] as in-
put. The core idea is to minimize LTotal over both labeled
and unlabeled data: for the unlabeled samples, we infer the
labels using the classifier pφ on clean samples and use them
for computing LTotal.

Let xL and xU denote the labeled and unlabeled samples.
For the labeled samples, we can directly estimate the LTotal
using ground truth labels obtained from the dataset. We de-
rive pseudo-labels for unlabeled examples using confidence
thresholding following FixMatch and use these for comput-
ing the LTotal on the unlabeled examples. In addition, we
implement the following consistency losses (Figure 5):

• Denoising Consistency Loss: Consider a sample x ∼
pt(x|x0) such that x0 ∼ xU and the corresponding
denoised example x̃ = x + σ(t)2sθ(x, t). Noting that
the score-network “sees” the image x̃ in the noisy input
x, we propose that pφ(y|x, t) and pφ(y|x̃, t) should be
identical. Furthermore, this aligns the classifier with
the score-model in the sense that the classifier learns
how the score-model would denoise the given image
and can adjust the class-conditional score accordingly.



• Temporal Consistency Loss: Consider a sample x1 ∼
pt(x|x0) such that x0 ∼ xU and another sample x2 ∼
pt+δ(t)(x|x0) where, for some small threshold ∆, δ(t)
is chosen such that σ(t+δ(t))−σ(t) ≤ ∆. We regulate
that pφ(y|x1, t) and pφ(y|x2, t) should be identical.

We enforce these consistency losses by minimizing the L2
distance of the network representations in the penultimate
layer. In all our experiments, we use a confidence threshold
of 0.95 to generate pseudo-labels and ∆ = 0.01 for the
temporal consistency loss.

PU Learning In the positive unlabeled setting, we ad-
ditionally minimize the cross-entropy between the class-
averages obtained on unlabeled examples diffused to time τ
and the supplied class prior.

4. Experiments
We evaluate our framework on MNIST, SVHN and CI-

FAR10 datasets in the classic semi-supervised setting and
compare with both generative and discriminative models
trained in a semi-supervised setting. We use SSL-VAE and
FlowGMM as the baselines for generative semi-supervised
methods and Π Model [19], Pseudo-Labelling [15], Mean
Teacher [15], MixMatch [4] and FixMatch [21] as base-
lines for discriminative semi-supervised methods. We used
the VE-SDE for the forward-diffusion as defined in [25]
with the noise scale σt ranging from 0.01 to 50.0. We use
NCSN++ network for the unconditional score network sθ:
for MNIST and SVHN, we train a 62.8M parameter network
for learning sθ while we used the pretrained checkpoint of
the deeper NCSN++ network containing 107M parameters
for CIFAR10 – open-sourced by [25]. For the classifier net-
work pφ, we use WideResNet 28-2 with 1.5M parameters
and use InstanceNormPlus (see [22]) instead of BatchNorm
for the normalization. We trained the classifier network us-
ing the AdamW optimizer with a learning rate of 1e-3 and
weight decay set to 5e-4: for MNIST and SVHN, we trained
the network for 48k steps while we trained the network for
200k steps for CIFAR10 reducing the learning rate to 2e-4
from 130k steps onwards. For all datasets, we used a labeled
batch-size of 64 and unlabeled batch-size of 192.

The semi-supervised classification accuracies are sum-
marized in Table 1: we report the average over 3 runs. We
observe that our model outperforms the generative modeling
baselines in terms of classification accuracy while remaining
competitive with the discriminative semi-supervised models.

For the Positive-Unlabeled experiments, we conduct ex-
periments on MNIST and SVHN by selecting one of the 10
classes as the positive class. We report the F1-scores for
different proportions of labels in Figure 2: we observe that
our model generalizes well given few positive examples and
class prior. We also compare our model accuracy with other

Dataset (nl/nu)

Method
MNIST
(1k/59k)

SVHN
(1k/72k)

CIFAR10
(4k/46k)

SSL-VAE [13] 97.6 63.98 -
FlowGMM [12] 99.0 86.44 80.9
Score-SSL (Ours) 99.1 96.2 87.3

Π Model[19] - 92.46 85.99
Pseudo-Labelling[15] - 90.96 83.91
Mean Teacher[26] - 96.58 90.81
MixMatch[4] - 96.5 93.58
FixMatch[21] - 97.72 95.74

Table 1. Semi-supervised Classification Accuracy: The table shows
the semi-supervised classification accuracies with nl labels. The
first block includes semi-supervised generative models as baselines
whereas the second block includes accuracies from standard semi-
supervised discriminative models for reference.

Figure 2. Positive-Unlabeled Learning Results: The graph shows
the F1-scores on MNIST and SVHN for OneVsRest Positive-
Unlabeled training setup. Specifically, we select one of the 10
classes as positive, label 100 or 500 of them and treat the remain-
ing as negative. We report the mean and variance of the F1-score
across 10 models. For reference, we also show the F1-score when
the entire training data is available.

PU baselines in Table 2: here, the classifier is trained to
classify between odd and even digits and 1k odd examples
are provided as positive samples.

PU-MNIST
(OddvsEven)

PvU [8] 91.10±0.92
uPU [17] 91.14±0.87
nnPU [14] 91.83±0.79
puNCE [1] 94.7±0.19
Score-SSL(Ours) 98.8±0.05

Table 2. Classification accuracy results on PU-MNIST: We ran-
domly choose 1k examples of Odd digits as positive examples and
treat the rest as unlabeled. We repeat the experiment 3 times.

We have included the generated class-conditional images
in the supplementary material.



Conclusion In this work, we propose a new framework for
semi-supervised training of class-conditional scores: impor-
tantly, it allows us to make use of a pretrained score-network
in defining the denoising consistency loss that helps im-
prove the classifier generalization. Our evaluations show that
the test-accuracies are better than previous semi-supervised
generative models and comparable to state-of-the-art semi-
supervised discriminative methods.
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A. Background: Semi-Supervised Classifica-
tion Methods

At a high-level, discriminative semi-supervised methods
can be differentiated in terms of their strategy to obtain la-
bel guesses (also referred to as pseudo-labels) and in how
the unlabeled examples along with their labeled guesses are
introduced into the training loss. For example, MixMatch
[4] applies K augmentations to an unlabeled image to form
an expectation of the label which is then ’sharpened’ and
used as the pseudo-label; finally, the labeled and unlabeled
examples undergo MixUp before being used to compute the
classification loss. Different from MixMatch, FixMatch[21]
selects unlabeled images whose confidence is above some
pre-determined threshold and assigns pseudo-labels; finally,
the classification loss is computed on strongly augmented
(i.e., heavily distorted) images instead of the clean images.
Other SOTA SSL algorithms such as ReMixMatch [3] and
UDA [28] also use strong-augmentation before computing
the classifier loss; in fact, VAT [16] and BadGAN [6] sug-
gest that training of semi-supervised classifier benefits most
from corrupted images instead of clean images. However,
using strongly augmented or mixed-up images as input to the
classifier model and using them in computing the classifica-
tion and score-matching objective would cause the model to
learn to generate from the distribution of strongly-augmented
images instead of clean images.

B. Generated Images
In the following, we show a grid of images sampled from

the unconditional score-network with guidance from the

Figure 3. CIFAR10 Samples

Figure 4. MNIST Samples

semi-supervised classifiers: for each class, we sample 10
images. We scale the classifier-gradients with s = 4.0 fol-
lowing Dhariwal and Nichol [7]. We trained the MNIST
and SVHN classifiers with 1k labeled examples while the
CIFAR10 classifier was trained with 4k labeled examples.
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Figure 5. SVHN Samples
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