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Abstract

Recent advances in robot learning have shown promise in
enabling robots to perform a variety of manipulation tasks
and generalize to novel scenarios. One of the key contribut-
ing factors to this progress is the scale of robot data used
to train the models. To obtain large-scale datasets, prior
approaches have relied on either demonstrations requiring
high human involvement or engineering-heavy autonomous
data collection schemes, both of which are challenging to
scale. To mitigate this issue, we propose an alternative route
and leverage text-to-image foundation models widely used in
computer vision and natural language processing to obtain
meaningful data for robot learning without requiring addi-
tional robot data. We term our method Robot Learning with
Semantically Imagened Experience (ROSIE). Specifically,
we make use of the state of the art text-to-image diffusion
models and perform aggressive data augmentation on top
of our existing robotic manipulation datasets via inpainting
various unseen objects for manipulation, backgrounds, and
distractors with text guidance. Through extensive real-world
experiments, we show that manipulation policies trained on
data augmented this way are able to solve completely unseen
tasks with new objects and can behave more robustly w.r.t.
novel distractors.

1. Introduction

Though recent progress in robotic learning has shown
the ability to learn a number of language-conditioned
tasks [4, 26, 54, 55], the generalization properties of such
policies is still far less than that of recent large-scale vision-
language models [7, 46, 51]. One of the fundamental reasons
for these limitations is the lack of diverse data that covers not
only a large variety of motor skills, but also a variety of objects
and visual domains. This becomes apparent by observing
more recent trends in robot learning research – when scaled
to larger, more diverse datasets, current robotic learning
algorithms have demonstrated promising signs towards more
robust and performant robotic systems [4, 26]. However, this
promise comes with an arduous challenge: it is difficult to
significantly scale up diverse, real-world data collected by

robots as it requires either engineering-heavy autonomous
schemes such as scripted policies [28, 35] or laborious human
teleoperations [4, 24]. To put it into perspective, it took 17
months and 13 robots to collect 130k demonstrations in [4].
In [28], the authors used 7 robots and 16 months to collect
800k autonomous episodes. While some works [30, 53, 67]
have proposed potential solutions to this conundrum by
generating simulated data to satisfy these robot data needs,
they come with their own set of challenges such as generating
diverse and accurate enough simulations [26] or solving
sim-to-real transfer [40, 50]. Can we find other ways to
synthetically generate realistic diverse data without requiring
realistic simulations or data collection on real robots?

To investigate this question we look to the field of computer
vision. Traditionally, synthetic generation of additional data,
whether to improve the accuracy or robustify a machine learn-
ing model, has been addressed through data augmentation
techniques. These commonly include randomly perturbing
the images including cropping, flipping, adding noise, aug-
menting colors or changing brightness. While effective in
some computer vision applications, these data augmentation
strategies do not suffice to provide novel robotic experiences
that can result in a robot mastering a new skill or generalizing
to semantically new environments [1, 34, 50]. However, re-
cent progress in high-quality text-to-image diffusion models
such as DALL-E 2 [46], Imagen [51] or StableDiffusion [48]
provides a new level of data augmentation capability. Such
diffusion-based image-generation methods allow us to move
beyond traditional data augmentation techniques, for three
reasons. First, they can meaningfully augment the semantic
aspects of the robotic task through a natural language interface.
Second, these methods are built on internet-scale data and
thus can be used zero-shot to generate photorealistic images of
many objects and backgrounds. Third, they have the capabil-
ity to meaningfully change only part of the image using meth-
ods such as inpainting [70]. These capabilities allow us to gen-
erate realistic scenes by incorporating novel distractors, back-
grounds, and environments while reflecting the semantics of
the new task or scene – essentially distilling the vast knowl-
edge of large generative vision models into robot experience.

In this paper, we investigate how off-the-shelf image-
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Figure 1. We propose using text-guided diffusion models for data augmentation in robot learning. These augmentations can produce highly
convincing images suitable for learning downstream tasks. As demonstrated in the figure, some of the objects were produced using our system,
and it is difficult to identify which are real and which are generated due to the photorealism of our system.

generation methods can vastly expand robot capabilities,
enabling new tasks and robust performance. We propose
Robot Learning with Semantically Imagened Experience
(ROSIE), a general and semantically-aware data augmenta-
tion strategy. ROSIE works by first parsing human provided
novel instructions and identifying areas of the scene to alter.
It then leverages inpainting to make the necessary alterations,
while leaving the rest of the image untouched. This amounts
to a free lunch of novel tasks, distractors, semantically mean-
ingful backgrounds, and more, as generated by internet-scale-
trained generative models. We demonstrate this approach on
a large dataset of robotic data and show how a subsequently
trained policy is able to perform novel, unseen tasks, and
becomes more robust to distractors and backgrounds.

2. Robot Learning with Semantically Imagened
Experience (ROSIE)

Our approach, ROSIE, automates robot data generation via
semantic image augmentation to improve robustness and gen-
eralization of policy learning. We assume access to labeled
state-action pairs of a robot performing a task with a natural
language instruction. ROSIE augments the instruction with
semantically different circumstances and generates masks of
relevant regions. It performs inpainting with Imagen Editor
based on the augmentation prompt, consistently augmenting
the robot trajectory across all time steps. Details of each com-
ponent are discussed in Sections 2.1 to 2.4. We use the gener-
ated data for downstream tasks such as policy learning and suc-
cess detection. See Figure 1 for an overview of the pipeline.

2.1. Augmentation Region Localization using Open
Vocabulary Segmentation

To generate semantically meaningful augmentations on
existing robotic datasets, we detect the image region for aug-

mentation using open-vocabulary instance segmentation. We
use OWL-ViT open-vocabulary detector [41] with an addi-
tional instance segmentation head to predict fixed resolution
instance masks for each bounding box detected by OWL-ViT,
similar to Mask-RCNN [17]. We freeze the main OWL-ViT
model and fine-tune a mask head on Open-Images-V5 in-
stance segmentations [3, 32]. The instance segmentation
model of OWL-ViT requires a language query to specify the
part of the image to detect. To obtain masks for objects that
the robot arm interacts with, we use the target object speci-
fied in the language instruction ` from each episode e of the
robotic dataset as a prompt to perform segmentation using
OWL-ViT. For example, if ` is “pick coke can”, the target
object of the task is a coke can. We also generate masks in
regions where distractors can be inpainted to improve the pol-
icy’s robustness. In this setting, we detect both the table and
all the objects on the table using OWL-ViT. This allows us to
sample a mask on the table that does not overlap with existing
objects (passthrough objects). We show examples of masks
detected by OWL-ViT from our robotic dataset in Figure 4.

2.2. Augmentation Text Proposal

We discuss two approaches to obtain the augmen-
tation prompt for the text-to-image diffusion model:
hand-engineered prompt and LLM-proposed prompt.

Hand-engineered prompt. The first method involves
manually specifying the object to augment. To generate
new tasks, we choose objects outside of our training data
to expand the data support. To improve policy robustness
and success detection, we randomly select semantically
meaningful objects and add them to the prompt to generate
meaningful distractors. For example, in Figure 3, to generate
novel in-hand objects by replacing the original object (green
chip bag) with various microfiber cloth, we use the prompt
Robot picking up a blue and white stripe
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cloth to perform inpainting effectively.

LLM-proposed prompt. While hand-engineered prompt
guarantees out-of-distribution data, it limits scalability. To
leverage large language models (LLMs) for prompt proposal,
we use GPT-3 [6] to propose objects for augmentation. We
specify the original task and the target task after augmen-
tation in the LLM prompt and ask the LLM to propose the
OWL-ViT prompt for detecting masks of the target region
and passthrough objects. Figure 1 shows an example of
LLM-assisted augmentation prompt proposal, where LLM-
generated text is informative, benefiting text-guided image
editing. We use LLM-proposed prompts in our experiments,
despite some noise in the prompts (see Appendix F), which
generally does not affect robotic control performance.

2.3. Diffusion Model for Text-Guided Inpainting

We use Imagen Editor [66], a text-to-image diffusion
model, for text-guided image editing based on a segmentation
mask and an augmentation prompt. Imagen Editor is a
state-of-the-art text-guided image inpainting model that
is fine-tuned on a pre-trained text-to-image generator,
Imagen [51], but our approach, ROSIE, is independent of
the inpainting model used. Imagen Editor uses a cascaded
diffusion architecture and can generate high-resolution
photorealistic augmentations, which is essential for robot
learning that relies on realistic images capturing physical
interactions. Furthermore, Imagen Editor is trained to
de-noise object-oriented masks provided by off-the-shelf
object detectors [52] and random box/stroke masks [61],
allowing inpainting with our mask generation procedure.

To formally summarize, given a robotic episode
e={(oi,ai,oi+1,`)}Ti=1, a segmentation mask m indicating
the target area(s) to modify, and our generated augmentation
text `aug, we iteratively query Imagen Editor with input oi,
m, and `aug over i = 1,...,T . Imagen Editor generates the
masked region according to the input text `aug (e.g., inserting
novel objects or distractors) while ensuring consistency with
the unmasked and unedited content of oi, resulting in the
augmented image õi. If `aug creates a new task, we modify
the instruction ` to ˜̀, as shown in Figure 3, where the original
instruction `= “pick green rice chip bag” is modified to ˜̀=
“pick blue microfiber cloth”, “polka dot microfiber cloth,” and
so on. The actions {ai}Ti=1 remain unchanged, as Imagen
Editor alters novel objects consistently with the semantics
of the overall image. In summary, ROSIE generates the
augmented episode ẽ = {(õi,ai, õi+1, ˜̀)}Ti=1. Leveraging
the expressiveness of diffusion models and priors learned
from internet-scale data, ROSIE provides physically realistic
augmentations (e.g., Figure 2) that make robot learning more
generalizable and robust, as we show in Section 3.

2.4. Manipulation Model Training

The goal of the augmentation is to improve learning
of downstream tasks, e.g. robot manipulation. We train a
manipulation policy based on Robotics Transformer (RT-1)
architecture [4] discussed in Appendix B. Given the ROSIE
augmented dataset D̃ :={ẽj}Ñj=1, where Ñ is the number of
augmented episodes, we train a policy on top of a pre-trained
RT-1 model [4] (35M parameters, trained for 315k steps at
a learning rate of 1×10−4). The finetuning uses a 1:1 mixing
ratio of D and D̃. We follow the same training procedure
described in [4] except that we use a smaller learning rate
1×10−6 to ensure the stability of fine-tuning.

3. Experiments

In our experimental evaluation, we focus on robot
manipulation and embodied reasoning (e.g. detecting if a
manipulation task is performed successfully). We design
experiments to answer the following research questions:
RQ1: Can we leverage semantic-aware augmentation to learn
completely new skills only seen through diffusion models?,
RQ2: Can we leverage semantic-aware augmentation to
make our policy more robust to visual distractors?

To answer these questions, we perform empirical evalua-
tions of ROSIE using the multi-task robotic dataset collected
in [4], which consists of ∼130k robot demonstrations with
744 language instructions collected in laboratory offices and
kitchens. These tasks include skills such as picking, placing,
opening and closing drawers, moving objects near target
containers, manipulating objects into or out of the drawers,
and rearranging objects. For more details regarding the tasks
and the data used we refer to [4]. We include the discussion
of RQ1 below and leave RQ2 to Appendix C.

In our experiments, we aim to understand the effects of
both the augmented text and the augmented images on policy
learning. We thus perform two comparisons, ablating these
changes: Pre-trained RT-1 (NoAug): we take the RT-1 pol-
icy trained on the 744 tasks in [4]. While pre-trained RT-1 is
not trained on tasks with the augmentation text and generated
objects, it has been shown to enjoy promising pre-training
capability and demonstrate excellent zero-shot generalization
to unseen scenarios [4] and therefore, should have the ability
to tackle the novel tasks to some extent; Fine-tuned RT-1
with Instruction Augmentation (InstructionAug): Similar
to [69], we relabel the original episodes in RT-1 dataset
to new instructions generated via our augmentation text
proposal 2.2 while keeping the images unchanged. We expect
this method to bring the text instructions in-distribution but
fail to recognize the visuals of the augmented objects.

For implementation details and hyperparameters, please
see Appendix D.
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3.1. RQ1: Learning new skills

To answer RQ1, we augment the RT-1 dataset via
generating new objects that the robot needs to manipulate.
We evaluate our method and the baselines in the following
four categories with increasing level of difficulty.

Learning to move objects near and place into generated
novel containers First, we test the tasks of moving training
objects near unseen containers or placing such objects into
the new containers. We visualize such unseen containers in
Figure 8 in Appendix E. We select the tasks “move {some
object} near white bowl” and “move {some object} near
paper bowl” within the RT-1 dataset, which yields 254
episodes in total. We use the augmentation text proposals to
replace the white bowl and the paper bowl with the following
list of objects {lunch box, woven basket, ceramic pot, glass
mason jar, orange paper plate}, which are visualized in
Figure 8. For each augmentation, we augment the same
number of episodes as the original task.

As shown in Table 1, our ROSIE fine-tuned RT-1 policy
(trained on both the whole RT-1 training set of 130k episodes
and the generated novel tasks) outperforms pre-trained RT-1
policy and fine-tuned RT-1 with instruction augmentations,
suggesting that ROSIE is able to generate fully unseen
tasks that are beneficial for control and exceeds the inherent
transfer ability of RT-1.

Learning to grasp generated unknown deformable ob-
jects Third, we test the limits of ROSIE on novel tasks
where the object to be manipulated is generated via ROSIE.
We pick the set of tasks “pick green chip bag” from the RT-1
dataset consisting of 1309 episodes. To accurately generate
the mask of the chip bag throughout the trajectory, we run our
open-vocabulary segmentation to detect the chip bag and the
robot gripper as the passthrough objects so that we can filter
out the robot gripper to obtain the accurate mask of the chip
bag when it is grasped. We further query Imagen Editor to sub-
stitute the chip bag with a fully unknown microfiber cloth with
distinctive colors (black and blue), with augmentations shown
in Figure 3. Table 1 again demonstrates that ROSIE outper-
forms pre-trained RT-1 and RT-1 with instruction augmenta-
tion by at least 150%, proving that ROSIE is able to expand the
manipulation task family via diversifying the manipulation
targets and boost the policy performance in the real world.

Learning to place objects into an unseen kitchen sink
in a new background To stress-test our diffusion-based
augmentation pipeline, we attempted to teach the robot to
place an object into a sink without ever collecting data for
that task in the real world. We took all the RT-1 tasks that
involved placing a can into the top drawer of a counter and
used ROSIE to detect the open drawer and replace it with a

metal sink using Imagen Editor. We dynamically computed
the mask of the open drawer at each frame of the episode,
excluding the robot arm and can from the mask. The sink
made the scene completely out of the training distribution,
making it challenging for the pre-trained RT-1 policy. The
results in the last row of Table 1 confirm this, with ROSIE
achieving a 60% success rate in placing the cans in the sink,
while the RT-1 policy failed to locate the cans and achieve
any success. See the first row of Figure 5 for a visualization.

Overall, through these experiments, ROSIE is shown to be
capable of effectively inpainting both the objects that require
rich manipulation and the target object of the manipulation
policy, significantly augmenting the number of tasks in
robotic manipulation. These results indicate a promising
path to scaling robot learning without extra effort of real data
collection.

Task Family / Text Instruction NoAug InstructionAug ROSIE

Move object near novel object 0.86 0.78 0.94
move coke can/orange near lunch box 0.8 0.6 0.9
move coke can/orange near woven basket 0.7 0.6 0.9
move coke can/orange near ceramic pot 1.0 0.9 1.0
move coke can/orange near glass mason jar 0.9 0.8 1.0
move coke can/orange near orange paper plate 0.9 1.0 0.9

Pick up novel object 0.25 0.3 0.75
pick blue microfiber cloth 0.1 0.4 0.8
pick black microfiber cloth 0.4 0.2 0.7

Place object into novel container 0.13 0.25 0.44
place coke can into orange plastic plate 0.0 0.19 0.5
place coke can into blue plastic plate 0.25 0.06 0.38

Place object into sink 0.0 - 0.6
place coke can into sink 0.0 - 0.8
place pepsi can into sink 0.0 - 0.4

Pick up object in new backgrounds 0.33 - 0.71
pick coke can on an orange table cloth 0.0 - 0.4
pick pepsi can on an orange table cloth 0.0 - 0.7
pick coke can on an blue and white table cloth 0.2 - 0.7
pick pepsi can on an blue and white table cloth 0.8 - 0.8
pick coke can near the side of a sink 0.4 - 0.5
pick pepsi can near the side of a sink 0.3 - 0.7
pick coke can in front of a sink 0.4 - 0.9
pick pepsi can in front of a sink 0.5 - 1.0

Place object into cluttered drawer 0.38 - 0.55
place blue chip bag into top drawer 0.5 - 0.4
place green jalapeno chip bag into top drawer 0.4 - 0.5
place green rice chip bag into top drawer 0.4 - 0.5
place brown chip bag into top drawer 0.2 - 0.8

Pick up object (with OOD distractors) 0.33 - 0.37
pick coke can 0.33 - 0.37

Table 1. Full Experimental Results for ROSIE. The blue shaded
results correspond to RQ1 and the orange shaded results correspond
to RQ2 (discussed in Appendix C). For each task family from top to
the bottom, we performed evaluations with 50, 20, 16, 10, 80, 40, and
27 episodes respectively (243 episodes in total). ROSIE outperforms
NoAug (pre-trained RT-1 policy) and InstructionAug (fine-tuned
RT-1 policy with instruction augmentation [69]) in both categories,
suggesting that ROSIE can significantly improve the generalization
to novel tasks and robustness w.r.t. different distractors.
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A. Related Work

Scaling robot learning. Given the recent results on
scaling data and models in other fields of AI such as
language [6, 9, 11] and vision [2, 7, 13], there are multiple
approaches trying to do the same in the field of robot learning.
One group of methods focuses on scaling up robotic data
via simulation [22, 26, 42, 53, 55, 56, 68, 71] with the hopes
that the resulting policies and methods will transfer to the
real world. The other direction focuses on collecting large
diverse datasets in the real world by either teleoperating
robots [4, 14, 24, 39] or autonomously collecting data via re-
inforcement learning [27, 28, 35] or scripting behaviors [10].
In this work, we present a complementary view on scaling the
robot data by making use of state-of-the-art text-conditioned
image generation models to enable new robot capabilities,
tasks and more robust performance.

Data augmentation and domain randomization. Domain
randomization [40, 63, 64] is a common technique for
training machine learning models on synthetically generated
data. The advantage of domain randomization is that it
makes it possible to train models on a wide variety of data
to improve generalization. Domain randomization usually
involves changing the physical parameters or rendering
parameters (lighting, texture, backgrounds) in simulation
models [16, 31, 33, 36]. Others use data augmentation to
transformer simulated data to be more realistic [1, 18, 47, 50]
or vice-versa [23]. Contrary to these methods, we propose to
directly augment data collected in the real world. We operate
directly on the real-world data and leverage diffusion models
to perform photorealistic image manipulation on this data.

Diffusion models for robot control. Though diffusion
models [12, 19, 20, 43, 46, 51, 57, 58, 59, 60] have become
common-place in computer vision, their application to
robotic domains is relatively nascent. [25] uses diffusion
models to generate motion plans in robot behavior synthesis.
Some works have used the ability of image diffusion models
to generate images and perform common sense geometric
reasoning to propose goal images fed to object-conditioned
policies [29, 37]. The recent concurrent works CACTI [38]
and GenAug [8] are most similar to ours. CACTI proposes to
use diffusion model for augmenting data collected from the
real world via adding new distractors and requires manually
provided masks and semantic labels. GenAug explores the
usage of depth-guided diffusion models for augmenting
new tasks and objects in real-world robotic data with
human-specified masks and object meshes. In contrast, our
work generates both novel distractors and new tasks without
requiring depth. In addition, it automatically selects regions
for inpainting with text guidance and leverages text-guided
diffusion models to generate novel, realistic augmentations.

B. Preliminaries

Diffusion models and inpainting. Diffusion models are
a class of generative models that have shown remarkable
success in modeling complex distributions [57]. Diffusion
models work through an iterative denoising process,
transforming Gaussian noise into samples of the distribution
guided by a mean squared error loss. Many such models also
have the capability for high-quality inpainting, essentially
filling in masked areas of an image [15, 21, 44, 70]. In
addition, such approaches can be guided by language, thus
generating areas consistent with both a language prompt and
the image as a whole [66].
Multi-task language-conditioned robot learning. Herein
we learn vision and language-conditioned robot policies via
imitation learning. We denote a dataset D := {ej}Nj=1 of
N episodes e = {(oi,ai,oi+1,`)}Ti=1 where o denotes the
observation, which correspond to the image in our setting, a
denotes the action, and ` denotes the language instruction of
the episode, identifying the target task. We then learn a policy
π(·|oi,`) to generate an action distribution by minimizing
the negative-log liklihood of actions, i.e. behavioral
cloning [45]. To perform large-scale vision-language robot
learning, we train the RT-1 architecture [4], which utilizes
FiLM-conditioned EfficientNet [62], a TokenLearner [49],
and a Transformer [65] to output actions.

C. RQ2: Robustifying manipulation policies

We investigate RQ2 with two scenarios: policy robustness
w.r.t. different backgrounds and new distractors.

Unseen background. We employ ROSIE to augment the
background in our training data. We perform two types of
augmentations: replacing the table top with a colorful table
cloth and inserting a sink on the table top. We select two
manipulation tasks, “pick coke can” and “pick pepsi can”
from our training set, which consists of 1222 episodes in total.
We run open-vocabulary segmentation to detect the table
and passthrough objects, which consist of the robot arm and
the target can. To generate a diverse set of table cloth during
augmentation, we query GPT-3 with the following prompt:
inpainting prompt: pick coke can from a red and yellow
table cloth
goal: list 30 more table cloth with different vivid
colors and styles with visual details
inpainting prompt: pick coke can from
1. Navy blue and white striped table cloth
2. White and pink polka dot table cloth
3. Mint green and light blue checkered table cloth
4. Cream and gray floral table cloth
5. Hot pink and red floral table cloth
...

We show the some example answers from GPT-3 in blue,
which are semantically meaningful. We use Imagen Editor
to replace the table top except the target can with the
LLM-proposed table cloth. To inpaint a sink on the table, we
follow the same procedure described in the placing objects
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into unseen sink task in Section 3.1 except that we inpaint
the sink on the table top rather than the open drawer. We
fine-tune the pre-trained RT-1 policy on both the original data
and the augmented episodes with generated table cloth and
metal sink. As shown in Table 1, ROSIE + RT-1 signifcantly
outperforms RT-1 NoAug in 7 out of 8 settings while
performing similarly to NoAug in the remaining scenario,
achieving an overall 115% improvement. Therefore, ROSIE
is highly effectively in robustifying policy performance under
varying table textures and background.

Novel distractors. To test whether ROSIE can improve
policy robustness w.r.t. novel distractors and cluttered scenes,
we consider the following two tasks. First, we train a policy
solely from the task “pick coke can” and investigate its
ability to perform this task with distractor coke cans, which
have not been seen in the 615 training episodes. To this end,
we employ ROSIE to add an equal number of augmented
episodes with additional coke cans on the table (see Figure 6
in Appendix E for visualizations). As shown in Table 1, RT-1
+ ROSIE augmentations improves the performance over RT-1
trained with “pick coke can” data only in scenarios where
there are multiple coke cans on the table.

Second, we evaluate a task that places a chip bag into a
drawer and investigate its ability to perform this task with
distractor objects already in the drawer, also unseen during
training. This scenario is challenging for RT-1, since the
distractor object in the drawer will confuse the model and
make it more likely to directly output termination action. We
use ROSIE to add novel objects to the drawer, as shown in
Figure 7 in Appendix E and follow the same training proce-
dure as in the coke can experiment. Table 1 shows that RT-1
trained with both the original data and ROSIE generated data
outperforms RT-1 with only original data. Our interpretation
is that RT-1 trained from the training data never sees this
situation before and it incorrectly believes that the task is
already solved at the first frame, whereas ROSIE can mitigate
this issue via expanding the dataset using generative models.

D. Experiment Details

D.1 Implementation Details and Hyperparameters

We take a pre-trained RT-1 policy with 35M parameters and
trained for 315k steps at a learning rate of 1×10−4 and fine-
tune the RT-1 policy with 1:1 mixing ratio of the original 130k
episodes of RT-1 data and the ROSIE-generated episodes
with for 85k steps with learning rate 1×10−6. We follow all
the other policy training hyperparameters used in [4].

To obtain the accurate segmentation mask of the target
region of augmentations, we set a threshold for filtering out
predicted masks with low prediction scores of both the region
of the interest and passthrough objects given by OWL-ViT.
In cases where we have multiple detected masks, we always

select the one with highest prediction score. Specifically, for
experiments where the robot is required to pick novel objects
or place objects into novel containers or move objects near
unseen containers (Section 3.1), we use a threshold of 0.07
to detect the in-hand objects and the containers while using a
threshold of 0.05 to detect passthrough objects, which are the
robot arm and robot gripper. In experiments where the robot
is instructed to place the coke can or the pepsi can into the
unknown sink or pick up coke can and the pepsi can with new
background , we use a threshold of 0.04 to detect the table with
all objects and a threshold of 0.03 to detect the passthrough
objects, which are the robot arm, robot gripper and the coke
can or the blue can in this case. In experiments discussed in
Sections C, we use the threshold of 0.3 to detect the table or
the open drawer where we want to add new distractors.

For generating LLM-assisted prompts, we perform 1-shot
prompting to the LLM. For example, in the setting of generat-
ing novel distractors in the task where we place objects into the
drawer (Section C), we use the following prompt to the LLM:
Source task: place pepsi can on the counter
Target task: place pepsi can on the clutter counter
ViT region prompt: empty counter
passthrough object prompt: robot arm, robot gripper
inpainting prompt: add a chip bag on the counter
Source task: place coke can into top drawer
Target task: place coke can into cluttered top drawer

and LLM generates the following prompt for detecting
masks and augmentations (light blue means LLM generated):
ViT region prompt: empty drawer
passthrough object prompt: robot arm, robot gripper
inpainting prompt: add a box of crackers in the drawer

which is semantically meaningful for performing mask
detection and Imagen Editor augmentation. We follow this
recipe of prompting for all of the tasks in our experiments.

During inpainting, we take the checkpoint of Imagen
Editor 64x64 base model and the 256x256 super-resolution
model trained in [66] and directly run inference to produce
augmentations.

During evaluation, for the tasks that perform moving
objects near novel containers and grasping unseen mi-
crofiber cloth, we perform 10 policy rollouts per new
container/microfiber cloth of each method. For tasks that
perform placing objects into novel containers, we perform
8 policy rollouts per new container for each method. For the
task where the robot is instructed to place coke can or pepsi
can into the unseen kitchen sink, for each method, we perform
5 policy rollouts for coke can and pepsi can respectively.
For the task where the robot is instructed to grasp the coke
can and the pepsi can in new backgrounds, we evaluate each
method with 10 rollouts. For the task where the robot places
the object into the cluttered drawer, we perform 10 policy
rollouts per object for each method. Finally, for the task that
requires the robot to pick up coke can in a scene with multiple
coke cans, we perform 27 policy rollouts for each approach.
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D.2 Computation Complexity

We train our policy on 16 TPUs for 1 day. For obtaining
segmentation masks, we perform inference of OWL-ViT on 1
TPU for 1 hour to generate 1k episodes. During augmentation,
we perform inference of Imagen Editor using 4 TPUs of the
64 x 64 base model and the 256 x 256 super-resolution model
respectively for 2 hours to generate 1k episodes.

E. Examples of Augmentations

We include more visualizations of augmentations
generated by ROSIE in this section. In Figure 8, we show
the generated episodes of ROSIE where we inpaint novel
containers in the scene, which are used in the Learning to
move objects near generated novel containers and Learn-
ing to place objects into generated unseen containers
experiments in Section 3.1.

In Figure 6 and Figure 7, we visualize augmented episodes
with new distractors, e.g. cluttered coke cans on the table and
chip bags in the empty open drawer. These augmentations
correspond experiments conducted in Section C.

We also visualize the attention layers in RT-1 when
training on our augmented data. As seen in Fig. 9, there are
attention heads focusing on our augmented objects, which
indicates the augmentation seem to be effective.

Overall, note that ROSIE is able generate semantically
realistic novel objects and distractors in the manipulation
setting. For example, ROSIE-generated objects typically has
realistic shades on the table or the drawer, which is beneficial
for training manipulation policies on top of such data.

“Add a coke to the drawer”
InstructPix2Pix

“Add a coke to the drawer”
ROSIE(Ours)

Original

Figure 2. Our augmentation scheme generates more targeted and
physically realistic augmentations that are useful for learning
downstream tasks, while other text-to-image generation methods
such as InstructPix2Pix [5] often makes global changes rendering
the image unusable for training.

F. Failure Cases of Generated Prompts and Images

While our LLM-assisted prompts generally work very
well, we would like to note that it requires few-shot
prompting to work well. In the zero-shot case, LLM would
just hallucinate and output unuseful augmentation prompts.

Original + detection

Robot picking up a [  ] cloth

red

blue

blue
and 

white 
stripe

polka
dot

Figure 3. Augmentations of in-hand objects during manipulation.
We show examples where ROSIE effectively inpaint novel objects
into the original in-hand objects during manipulation. On the top
row, we show the original episode with detected masks where the
robot picks up the green chip bag. On the following row, we show
that ROSIE can inpaint various microfiber cloth with different
colors and styles into the original green chip bag. For example, we
can simply pass the original episode with the masks and the prompt
Robot picking up a polka dot cloth to get an episode
the robot picking such cloth in a photorealistic manner.

For example, if we provide the following zero-shot prompt:
Source task: pick coke can on a table
Target task: pick coke can near a sink
Goal: replace the scene in the source task with the
scene in the target task
inpainting prompt:

and LLM gives the following response:
Pick up the coke can near the sink,
replacing the one originally on the table

,which is not correct. Therefore few-shot prompting is crucial
in ROSIE.

We show the failure cases of the augmented images in
Figure 10. For the two examples on the left, ROSIE is
supposed to generate woven basket and glass mason jar
respectively, but it fails to generate such containers and
instead generate some bowl-shape containers. For the two
examples on the right, ROSIE is supposed to replace the
in-hand green chip bag with blue microfiber cloth and a
yellow rubber duck respectively. However, as the mask of the
in-hand object becomes irregular, the performance of ROSIE
degrades and ROSIE is unable to generate blue microfiber
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Figure 4. We show the original images from RT-1 datasets on the
top row and the images with detected masks and mask labels on the
bottom row.

cloth and the yellow rubber duck in full shape and half of
the in-hand object remains as the green chip bag. We suspect
that with fine-tuning Imagen Editor on robotic datasets that
show more manipulation-related data, we can improve the
generation results drastically. Note that while the generation
could be suboptimal at times, our insight is that such
imperfect generation can only lead to misalignment between
the task instruction and images, which may not have a big
negative impact on the policy results and could give extra
data augmentation benefit for free. Our policy performance
in Section 3 validates this insight to some degree.
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ROSIE  Augmentation

Rollout of learned policy In real

Original

mask region prompt: large gray 
drawer with objects in it
passthrough object prompt: 
robot arm, robot gripper 
Inpainting prompt: A metal sink 
in an office kitchen

Figure 5. We show an episode augmented by ROSIE (top row) where ROSIE inpaints the metal sink onto the top drawer of the counter and a
rollout of policy trained with both the original episodes and the augmented episodes in a real kitchen with a metal sink. The policy successfully
performs the task “place pepsi can into sink” even if it is not trained on real data with sink before, suggesting that leveraging the prior of
the diffusion models trained with internet-scale data is able to improve generalization of robotic learning in the real world.

Figure 6. Augmentation Example - adding a distractor can on the table.

Figure 7. Augmentation Example - adding distractor objects into the drawer.
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Figure 8. Augmentation Example - changing the container.

pick blue/red microfiber cloth

place coke in sink

Figure 9. Visualization of some attention heads focusing on our augmented objects. This visualization is an overlay of observation and the
spatial attention (bright regions means high attention).
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Figure 10. Failure cases of image augmentations.
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