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Abstract

Large-scale diffusion models have achieved unprece-
dented results in (conditional) image synthesis, however,
they generally require a large amount of GPU memory and
are slow at inference time. To overcome this limitation,
we propose to distill the knowledge of pre-trained (teacher)
diffusion models into smaller student diffusion models via
an approximate score matching objective. For classifier-
free guided generation on CIFAR-10, our student model
achieves a FID-5K of 8.03 using 273G flops. In compar-
ison, the larger teacher model only achieves a FID-5K of
294 using 424G flops. We present initial experiments on
distilling the knowledge of Stable Diffusion, a large scale
text-to-image diffusion model, and discuss several promis-
ing future directions.

1. Introduction

Diffusion models (DMs) achieve both state-of-the-art
synthesis quality and sample diversity using an iterative
sampling process. In computer vision DMs have been used
for (conditional) image [8, 18, 19, 35, 39, 40] and (condi-
tional) video [20, 48, 58] synthesis, super-resolution [26,
44], deblurring [24, 55], image editing and inpainting [31,
34, 41, 43], conditional and semantic image generation [2,
5, 28, 36, 38], image-to-image translation [43, 47, 53], in-
verse problems in medical imaging [6, 7, 21, 32, 37, 51, 57],
and differentially private image synthesis [9, 13].

In particular large-scale text-to-image DMs have re-
cently gained a lot of attention, being able to synthe-
size high-resolution photorealistic images [39, 40, 45]. To
achieve this powerful performance these DMs rely on neu-
ral network backbones with billions of parameters [39, 45].
Networks of this size require a large amount of GPU mem-
ory and they are slow at inference time, making it difficult
to deploy them in real-time or on resource-limited devices.

The issue of slow inference has, for example, been ad-
dressed by the development of faster DM samplers [10, 11,
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29, 30, 49]. Another promising approach to tackle this is-
sue is to distill the entire iterative sampling process of a
(teacher) DM into a student (sampling) model [3, 33, 46,
52]; we refer to this approach as sampling distillation. To
accelerate training, the student network is initialized from
the teacher, and therefore student and teacher have the same
number of parameters. After distillation, the student model
can synthesize samples using only a few network evalua-
tions rather than tens of network evaluations needed for the
teacher model. Sampling distillation reduces the inference
time while keeping the required GPU memory constant.

In this work, we instead propose to distill the knowledge
(rather than the iterative sampling process) of a teacher DM
into a smaller student DM, that is, the student should learn
to match the predictions of the teacher for any input. Com-
pared to sampling distillation, reducing the network size of
a DM results in less GPU memory as well as faster infer-
ence: though the student model may still require tens of
evaluations for sampling, each evaluation is significantly
faster. Knowledge distillation (KD) [16] has been widely
used in discriminative modeling [4, 14, 16, 54, 56], but only
rarely in generative modeling [1]. We propose a robust ap-
proximate score matching objective to perform KD.

We thoroughly evaluate our proposed method on CIFAR-
10 [25] and find that we can drastically decrease the re-
quired inference time of students model compared to their
teachers; see Figure 1. Furthermore, we show early results
on distilling Stable Diffusion [40], a large text-to-image la-
tent DM; see Section 5. We envision that our framework,
which can potentially be combined with orthogonal ideas
such as fast DM samplers and sampling distillation, paves
the way towards fast and high-resolution synthesis of DMs
on resource limited devices.

2. Background
We consider continuous-time DMs [50] and follow the

presentation of Karras et al. [23]. Let pdata(x0) denote the
data distribution and p(x;σ) be the distribution obtained by
adding i.i.d. σ2-variance Gaussian noise to the data distribu-
tion. For sufficiently large σmax, p(x;σ2

max) is almost indis-
tinguishable from σ2

max-variance Gaussian noise. Capital-
izing on this observation, DMs sample high variance Gaus-
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(a) s: 129G flops, 5 steps (b) s: 273G flops, 10 steps (c) t: 424G flops, 3 steps (d) t: 764G flops, 5 steps (e) t: 1612G flops, 10 steps

Figure 1. Guided image generation on CIFAR-10 (guidance strength w=0.5) with student model s and teacher model t. The student model
needs considerably less flops to achieve similar performance.

sian noise xM ∼ N
(
0, σ2

max

)
and sequentially denoise xM

into xi ∼ p(xi;σi), i ∈ {0, . . . ,M}, with σi < σi+1 and
σM = σmax. Assuming the DM is accurate, if σ0 = 0 then
the resulting x0 is distributed according to the data.

Sampling. In practice, this iterative denoising process
explained above can be implemented through the numeri-
cal simulation of the Probability Flow ordinary differential
equation (ODE) [50]

dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt, (1)

where ∇x log p(x;σ) is the score function [22]. The sched-
ule σ(t) : [0, 1] → R+ is user-specified and σ̇(t) de-
notes the time derivative of σ(t). Alternatively, we may
also numerically simulate a stochastic differential equation
(SDE) [23, 50]:

dx =−σ̇(t)σ(t)∇x log p(x;σ(t)) dt︸ ︷︷ ︸
Probability Flow ODE; see Equation (1)

(2)

−β(t)σ2(t)∇x log p(x;σ(t)) dt+
√
2β(t)σ(t) dωt︸ ︷︷ ︸

Langevin diffusion component

,

where dωt is the standard Wiener process. In principle, sim-
ulating either the Probability Flow ODE or the SDE above
results in samples from the same distribution.

Training. DM training reduces to learning a model
sθ(x;σ) for the score function ∇x log p(x;σ). The model
can, for example, be parameterized as ∇x log p(x;σ) ≈
sθ(x;σ) = (Dθ(x;σ) − x)/σ2 [23], where Dθ is a learn-
able denoiser that, given a noisy data point x0 + n, x0 ∼
pdata(x0), n ∼ N

(
0, σ2Id

)
, and conditioned on the noise

level σ, tries to predict the clean x0. The denoiser Dθ (or
equivalently the score model) can be trained via denoising
score matching (DSM)

E(x0,c)∼pdata(x0,c),
(σ,n)∼p(σ,n)

[
λσ∥Dθ(x0 + n;σ, c)− x0∥22

]
, (3)

where p(σ,n) = p(σ)N
(
n;0, σ2

)
, p(σ) is a distribution

over noise levels σ, λσ : R+ → R+ is a weighting func-
tion, and c is a conditioning signal, e.g., a class label or a

text prompt. For unconditional modeling, c may simply be
ignored.

Classifier-free guidance. Classifier-free guidance [17]
is a technique to guide the iterative sampling process of a
DM towards a particular conditioning signal c by mixing
the predictions of a conditional and an unconditional model

Dw(x;σ, c) = (1 + w)D(x;σ, c)− wD(x;σ), (4)

where w ≥ 0 is the guidance strength. In practice, the un-
conditional model can be trained jointly alongside the con-
ditional model in a single network by randomly replacing
the conditional signal c with a (learnable) null embedding
in Equation (3), e.g., 10% of the time [17]. Classifier-free
guidance is widely used to improve the sampling quality, at
the cost of reduced diversity, of text-to-image DMs [35, 40].

3. Method

We propose to distill the knowledge of a large DM, with
frozen parameters ϕ, into a small student DM, with param-
eters θ, via an (approximate) score matching (SM) loss

E
[
λσ∥Dθ(x0 + n;σ, c)−Dϕ(x0 + n;σ, c)∥22

]
, (5)

where the expectation is over the same distributions as
in Equation (3). The loss in Equation (5) is consistent: zero
loss implies that the knowledge of the teacher has been per-
fectly distilled into the student model (assuming full support
of pdata(x0) and p(σ)). Furthermore, Equation (5) becomes
standard score matching [22] as the teacher score model
sϕ(x;σ) = (Dϕ(x;σ) − x)/σ2 approaches the true score
function ∇x log p(x;σ).

Guided distillation. To distill the knowledge of a jointly
trained (un)conditional DM for classifier-free guidance, we
can randomly replace the conditioning signal c with the null
embedding in Equation (5). Note, however, that during in-
ference we still need to evaluate the student model twice
to compute Equation (4). To accelerate inference even fur-
ther, we may follow Meng et al. [33] and directly distill the
guidance computation (for an interval [wmin, wmax]) jointly
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Figure 2. Unconditional image generation on CIFAR-10. Teacher
model t and a variety of student models s with different number
of base channels indicated in the legend. Linear y-axis as inset.

Table 1. Parameters and number of flops (per single forward pass)
of the unconditional teacher model t and student models s.

Model s-32 s-64 s-96 s-128 t

# of M parameters 2.2 8.8 19.8 35.1 55.7
# of G flops 1.64 6.42 14.36 25.44 42.42
# of residual blocks 2 2 2 2 4
# of base channels 32 64 96 128 128

with the knowledge of the teacher model, i.e.,

E(x0,c)∼pdata(x0,c),
(σ,n)∼p(σ,n),

w∼U [wmin,wmax]

[
λσ∥Dθ(x;σ, c, w)−Dw

ϕ(x;σ, c)∥22
]
,

(6)

where Dw
ϕ is computed via Equation (4) and x = x0 + n.

Note that the student model is now additionally conditioned
on the guidance strength w.

4. Experiments
We focus our efforts on a thorough evaluation on CIFAR-

10 [25]. Student and teacher DMs are implemented using
the DDPM++ architecture [50]. The teacher model uses
128 base channels while we use a variety of student models
ranging from 32 to 128 base channels. We generate sam-
ples from our DMs using the deterministic Heun sampler
proposed in Karras et al. [23] and we measure the sample
quality via Fréchet Inception Distance (FID) [15] using 5k
synthesized samples and all training samples. All experi-
ment and training details can be found in Appendix A.1

4.1. Unconditional Distillation

We compare an unconditional teacher model to a variety
of student models; see Table 1. We compute FID-5k for
each model using a variety of solver steps; see Figure 2 for
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Figure 3. Distilling
a large teacher DM
into a smaller model
(KD) leads to faster
convergence and
overall better perfor-
mance than standard
DSM training (for
the smaller model).
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Figure 4. Guided image generation on CIFAR-10 (guidance
strength w=0.25). Teacher model t and student model s. The stu-
dent is conditioned on the guidance scale w whereas the teacher
model needs to evaluate both a conditional and an unconditional
DM per step. Linear y-axis as inset.

results. For fair comparison, the x-axis shows the accumu-
lated number of G flops rather than the number of solver
steps. We can see that there exist fixed budgets of G flops
for which each of the four student model performs best, e.g.,
s-32 at 50 G Flops and s-96 at 400 G Flops, etc. Therefore,
given GPU memory or inference time constraints, the size
of the teacher model can be tuned to optimize performance.
Overall, the gap between the larger student models (with 96
and 128 base channels) and the teacher model are reason-
able, i.e., less than one FID-5K.

We also compare the training speed of our s-96 model
to a standard DM (trained with Equation (3)) with the same
neural network backbone; see Figure 3. The student model
needs less iterations for convergence and overall converges
to a better FID-5K value (7.63 vs 8.60). Note that during
each iteration of KD we also need to do a forward pass
through the larger teacher model; to reduce additional train-
ing time cost, the forward passes of teacher and student
models may be parallelized.

4.2. Guided Distillation

We additionally train a guided student model (96 base
channels) with KD according to Equation (4) where we set
wmin=0.0 and wmax=3.0. In Figure 4, we compare the
student model to the teacher model for guidance strength
w=0.25. The discrepancy of the performance at small num-
ber of G flops between the student and the teacher is even



(a) DSM: 7742G flops, 50 steps (b) s: 7742G flops, 50 steps (c) t: 8145G flops, 12 steps (d) t: 33936G flops, 50 steps

Figure 5. Samples generated for the DSM baseline, the KD student model s and the original Stable Diffusion (teacher) model t. Prompt:
“A beautiful castle, matte painting.”.
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Figure 6. Initial experiments on Stable Diffusion show that dis-
tilling the network of large scale text-to-image DMs into smaller
student models leads to better performance and faster convergence
compared to standard DSM training. The gap of the student to the
teacher is, however, still significant and needs to be addressed in
future work. The solid and dotted lines represent zero-shot FID-
5K and CLIPSIM on COCO [27], respectively.

more striking than in the unconditional case, likely due to
the simultaneous KD and guidance distillation. Overall, the
gap between the student and the teacher model is reason-
able, less than 0.75 FID-5K. Samples for both the student
and teacher models can be found in Figure 1.

5. Future Directions

We have shown that the size of the neural network back-
bone in DMs can be drastically reduced with our KD ap-
proach resulting in faster inference, while keeping overall
performance drops to a reasonable level. We envision our
method as a promising tool for relevant and novel applica-
tions in generative modeling, e.g., text-to-image synthesis
on edge devices. In future work, we are planning to expand
this work into the following directions:

Combining KD with sampling distillation. Distilling
the sampling process of DMs [3, 33, 46, 52] allows for high-
quality synthesis of large-scale models in several seconds.
Sampling distillation is orthogonal to our KD approach, and
combining these two ideas is a promising future research di-

rection. An interesting question may be the order of distilla-
tion: Should we first distill the sampling process or the net-
work? Or could we potentially do both distillations jointly?

Mixed training. In this work, we only considered pure
distillation, however, it has been shown to be helpful to
combine KD with standard training in discriminative mod-
els [16]. One approach for mixed training may be a linear
combination of Equation (3) and Equation (5). As we show
in Appendix B, this mixed training approach is equivalent
to performing distillation with an additional term

2αλσ(Dθ(x;σ)−Dϕ(x;σ))
⊤(Dϕ(x;σ)− x0), (7)

where α ∈ [0, 1], inside the expectation of Equation (5).
Better initialization. Fine-tuning large-scale DMs has

been shown to be highly effective: for example, fine-tuning
text-to-image DMs for, say, 100 to 1000 iterations on a
small dataset of a few images results in highly editable per-
sonalized text-to-image models [12, 42]. Similarly, stu-
dent models in sampling distillation are generally initial-
ized from the teacher model, which allows for fine-tuning
and results in faster convergence. In contrast, our student
architectures are smaller, and therefore we cannot directly
make use of the teacher for initialization. Future work could
explore better initialization methods that may improve the
training speed of our KD approach.

Applying KD to larger models. In this work, we
thoroughly study KD of DMs for CIFAR-10. An obvious
future direction is to scale our approach to larger models:
To this end, we perform a preliminary study on Stable Dif-
fusion [40], distilling its latent DM into a network of less
than a quarter of the original size (from 866M to 200M pa-
rameters). Compared to training a standard DM of the same
size with DSM (Equation (3)), we find that the KD student
converges faster and to a better value; see Figure 6. This
is a promising result which may indicate that our results
on CIFAR-10 transfer to large-scale DMs. Compared to
our CIFAR-10 results, however, we found that there is still
a substantial gap compared to the teacher model; see also
samples in Figure 5. Experiment details can be found in Ap-
pendix A.2. In future work, we are planning to thoroughly
evaluate our KD approach to large-scale (latent) DMs.
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A. Experiment Details
A.1. CIFAR-10

Our teacher models for CIFAR-10 are taken from Karras et al. [23]; one conditional3 and one unconditional model4. The
networks are based on the DDPM++ architecture [50]. The teacher and student models have four and two residual blocks,
respectively. The teacher model has 128 base channels while we train multiple student models ranging from 32 to 128 base
channels. All models are trained for 100k iterations, using a batch size of 512, to ensure convergence. We use Adam with
learning rate 1 × 10−3 and an exponential moving average half-life of 50M images, following Karras et al. [23]. For KD,
we do not use any dropout while the DSM baseline in Figure 3 uses a dropout probability of 10% to prevent over-fitting. All
student models (and the DSM baseline) use the same network preconditioning, noise distribution p(σ) and loss weighting λσ

as the teacher model; see the last column of Table 1 in Karras et al. [23].

A.2. Stable Diffusion

Our teacher model is Stable Diffusion [40] fine-tuned to v-parameterization [46]. The student model (and the DSM
baseline) uses the same architecture as Stable Diffusion, however, the number of base channels is reduced from 360 to 192
and the transformer block at the highest resolution is removed. We use AdamW with learning rate 3 × 10−4 and batch size
512. The exponential moving average half life, the noise distribution p(σ), and the loss weighting λσ for both the student
model and the DSM baseline are the same as used in the original Stable Diffusion model.

B. Mixed Training Derivation
In Section 5, we propose the following mixed training objective

E[λσ

(
(1− α)∥Dθ(x;σ, c)−Dϕ(x;σ, c)∥22 + α∥Dθ(x;σ, c)− x0∥22

)
], (8)

where x = x0 + n. Let us add and subtract the teacher model Dϕ to the second norm

∥Dθ(x;σ, c)− x0∥22 = ∥Dθ(x;σ, c)−Dϕ(x;σ, c) +Dϕ(x;σ, c)− x0∥22 (9)

= ∥Dθ(x;σ, c)−Dϕ(x;σ, c)∥22 + 2(Dθ(x;σ)−Dϕ(x;σ))
⊤(Dϕ(x;σ)− x0) + ∥Dϕ(x;σ, c)− x0∥22

(10)

= ∥Dθ(x;σ, c)−Dϕ(x;σ, c)∥22 + 2(Dθ(x;σ)−Dϕ(x;σ))
⊤(Dϕ(x;σ)− x0) + const. (11)

Note that the last term in the above equation is a constant with respect to the learnable parameters θ. Plugging the above
into Equation (8), we have

E[λσ

(
∥Dθ(x;σ, c)−Dϕ(x;σ, c)∥22 + 2α(Dθ(x;σ)−Dϕ(x;σ))

⊤(Dϕ(x;σ)− x0)
)
] + const. (12)

This shows that mixed training is equivalent to plain distillation with a regularization term which uses the clean data x0.
Alternatively, we may similarly add and subtract the clean data x0 to the first norm in Equation (8) which results in

E[λσ

(
∥Dθ(x;σ, c)− x0∥22 + 2(1− α)(Dθ(x;σ)− x0)

⊤(x0 −Dϕ(x;σ))
)
] + const, (13)

which shows that mixed training is also equivalent to standard DM training (DSM in Equation (3)) with an additional regu-
larization term involving the teacher network Dϕ.

3https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-uncond-vp.pkl
4https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-uncond-ve.pkl

https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-uncond-vp.pkl
https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-uncond-ve.pkl
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