

Overview of Method

- How do we solve Model Agnostic Zero-Shot Classification?
- Use stable diffusion to generate synthetic training data to train downstream models.
- The performance of real data is dependent on the diversity of the synthetic images used for training.
- Enhance the diversity of the synthetic training data with adjustments to the **prompts** and generation settings used.

Bag of Tricks

Base Class: "An image of a {class}" **Class Prompt:** "{class}" **Multi-Domain:** "a {domain} of a {class}" **Random Guidance:** "An image of a {class}" + random unconditional guidance [1] value set between 1-5

Base Class

Class Prompt

Multi-Domain

Random Guidance

Meeting ID: 926 453 9384 **Email:** jordan.shipard@hdr.qut.edu.au Acknowledgement

This work has been supported by the SmartSat CRC, whose activities are funded by the Australian Government's CRC Program; and partly supported by Sentient Vision Systems. Sentient Vision Systems is one of the leading Australian developers of computer vision and artificial intelligence software solutions for defence and civilian applications.

Citations

[1] "Classifier-free diffusion guidance", Jonathan Ho and Tim Salimans, NIPS 2021 [2] "Learning Transferable Visual Models From Natural Language Supervision", Radford et al., ICML 2021

