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Abstract

Unsupervised compositional generation, a desired abil-
ity of object-centric learning, aims to synthesize novel im-
ages using visual concepts derived from existing images
without supervised guidance. However, existing meth-
ods are limited by constraints in image decoders, mak-
ing them incompetent to handle complex realistic scenes.
In this study, we introduce Latent Slot Diffusion (LSD),
a novel object-centric learning model that leverages re-
cent advances in diffusion modeling to address these lim-
itations. LSD replaces traditional slot decoders with a
slot-conditioned latent diffusion model, resulting in supe-
rior performance compared to state-of-the-art approaches
in terms of object segmentation and compositional genera-
tion. Importantly, for the first time in this line of research,
LSD enables unsupervised compositional generation and
image editing on the FFHQ dataset. From diffusion models
perspective, LSD is the first unsupervised compositional dif-
fusion model that does not rely on supervised annotations,
such as text descriptions, for learning to compose.

1. Introduction
The underlying fundamental structure of the physical

world is compositional and modular. While in some data
modalities like language, this compositional structure is nat-
urally revealed in the form of tokens or words, in general,
this structure is hidden in modalities such as images and it is
quite elusive how one may discover it. Object-centric learn-
ing [18] aims to discover this hidden compositional struc-
ture from unstructured observation by learning to bind rele-
vant features into useful tokens unsupervisedly. For images,
one of the most popular approaches is to auto-encode the
image using a Slot Attention [30] encoder and a mixture de-
coder However, the low-capacity mixture decoder make it
struggle when dealing with complex naturalistic scene im-
ages. Recently, Singh et al. [40] show that increasing the
decoder capacity is the key to dealing with complex and
naturalistic scenes in object-centric learning. This naturally
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Figure 1. Compositional Image Generation. Given the trained
model, we can generate novel images by composing a slot-based
concept prompt and decoding it using the trained latent slot diffu-
sion decoder.

raises a question: can the powerful modeling capacity of
diffusion models be beneficial for object-centric learning?

In this paper, our aim is to answer this question. For
this, we propose a novel model called Latent Slot Diffusion
(LSD). The LSD model can be understood from two per-
spectives. From object-centric learning perspective, LSD
can be seen as replacing the conventional slot decoders with
a conditional latent diffusion model where the conditioning
is on object-centric slots provided by Slot Attention. From
diffusion models perspective, LSD is the first unsupervised
compositional conditional diffusion model. Unlike conven-
tional conditional diffusion models [29, 35–37] that rely on
supervised annotations, such as text descriptions of an im-
age, to perform compositional generation, LSD constructs
such a description with visual concepts learned through un-
supervised object-centric learning

In experiments, we show that the LSD model signifi-
cantly outperform the state-of-the-art model in terms of un-
supervised object segmentation and compositional genera-
tion.

2. Latent Slot Diffusion

2.1. Object-Centric Encoder

Given an input image x ∈ RH×W×C , our object-centric
encoder seeks to decompose and represent it as a collection
of N vectors or slots S ∈ RN×D where each slot (denoted



as sn ∈ RD) should represent one object in the image. For
this, we adopt the Slot Attention architecture.

In Slot Attention, we first encode the input image x as
a set of M input features E ∈ RM×Dinput via a CNN back-
bone network. Next, we group the features in E into N
slots via an iterative refinement procedure. At each step,
the slots are refined via competitive attention over the input
features: A = softmax

N

(
q(S)·k(E)T√

D

)
, where, q, k, v are

linear projections that map the slots and input features to
a common dimension D. Then, for each n, all input fea-
tures are sum-pooled weighted by their attention weights

An,m =
An,m∑M

m=1 An,m

to produce an attention readout

un =
∑M

m=1 v(Em)An,m. Using the bottom-up informa-
tion captured by the readout un, the slots are updated by an
RNN as sn = fRNN

ϕ (sn,un). In practice, the refinements
are performed iteratively several times and slots from the
last iteration are considered the final slot representation S.

2.2. Latent Slot Diffusion Decoder

In this section, we describe our proposed decoding ap-
proach called Latent Slot Diffusion Decoder or LSD de-
coder for reconstructing the image given the slot represen-
tation S. Notably, we leverage diffusion modeling to re-
construct the VQGAN latent z0 conditioned on the slots S.
VQGAN provide a way to reduce the computational burden
by allowing it to use the lower dimensional latent z0 as an
intermediate reconstruction target. This takes advantage of
the recent advances in generative modeling [14, 36].

Sampling Procedure. To sample a z0 ∼ pθ(z0|S),
we adopt an iterative denoising procedure as in [20, 36].
The sampling process starts with a latent representation
zT ∼ N (0, I) filled with random Gaussian noise. Next,
conditioned on the slots, we denoise it T times by sam-
pling sequentially from the one-step denoising distribution
zt−1 ∼ pθ(zt−1|zt, t,S) for t = T, . . . , 1. The one-step
denoising distribution is parametrized via a neural network
gLSD
θ in the following manner:

pθ(zt−1|zt, t,S) = N
(

1
√
αt

(
zt −

βt√
1− ᾱt

ϵ̂t

)
, βtI

)
Where, ϵ̂t = gLSD

θ (zt, t,S), and β1, . . . , βT is a linearly
increasing variance schedule, αt = 1 − βt, and ᾱt =∏t

i=1(1 − βi). The slot conditioning is realized using a
cross-attention transformer layer, which calculates the inter-
actions between slots and the denoising feature map. This
produces a sequence of latents zT , zT−1, . . . , z0 that be-
come progressively cleaner. Finally, z0 can be considered
as the reconstructed latent representation.

Training Procedure. Following LDM [36], the training
of pθ(z0|S) can be cast to a simple procedure for training
gLSD
θ as follows. Given an image x, its slot representation S,

and its VQGAN latent z0, we first randomly choose a noise
level t ∈ {1, . . . , T} from a uniform distribution. Given the
t, we corrupt the clean latent z0 and obtain a noised latent
zt as: zt =

√
ᾱtz0 +

√
1− ᾱtϵt, where ϵt ∼ N (0, I). The

noised latent zt is then given as input to gLSD
θ along with

the slots S and denoising time-step t to predict the noise
ϵt. The network gLSD

θ is trained by minimizing the mean
squared error between the predicted noise ϵ̂t and the true
noise ϵt: L(ϕ, θ) = Et,z,ϵ||ϵ̂t − ϵt||2

3. Compositional Image Synthesis
In this section, we describe how a trained LSD model

can be used to compose and synthesize novel images. Fol-
lowing [40], LSD builds a library of visual concepts from
unlabeled images. Then, similarly to composing a sentence
prompt using words, we compose a concept prompt by pick-
ing concepts from this library. We can then synthesize a de-
sired novel image by providing this concept prompt to the
LSD decoder.

Unsupervised Visual Concept Library. To build a li-
brary of visual concepts from unlabelled images, we first
apply slot attention to obtain slots from a large batch of B
images. We then collect all these slots as a single set S
and apply K-means on it. We consider the slots that are as-
signed to a k-th cluster as a visual concept library Vk. This
procedure provides K visual concept libraries. Our exper-
iments shall show that this simple K-means procedure can
produce semantically meaningful concept libraries. For in-
stance, on a dataset of human face images such as FFHQ
[26], the K libraries correspond to useful concept classes
such as hair style, face, clothing, and background.

Novel Image Synthesis. Given libraries V1, . . . ,VK ,
we can compose a concept prompt Scompose by pick-
ing K slots, each from the corresponding k-th library,
and stacking them together: Scompose = (s1, . . . , sK),
where, sk ∼ Uniform(Vk). We then give the composed
prompt Scompose to the LSD decoder to generate the latent:
zcompose ∼ pθ(z0|Scompose).

4. Related Work
Unsupervised Object-Centric Learning. A common

approach of object-centric learning is by auto-encoding.
In this line, the focus has been to design an appropri-
ate decoder that supports good decomposition. The most
widely used decoders include the mixture-decoder [1, 3,
10–12, 16, 17, 24, 30, 46, 49], spatial transformer decoder
[5–7,13,23,27], Neural Radiance Fields (NeRF) [43,45,47],
transformer decoder [4, 15, 39–42, 48], energy-based mod-
els [9] and complex-valued functions [31]. However, ex-
isting methods still face limitations in complex scenes or
multi-object scenarios.

Diffusion Models. Diffusion models (DMs) are a recent
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CLEVRTex FFHQ
Figure 2. Visualization of Unsupervised Object Segmentation.
We show visualizations of predicted segments on CLEVRTex and
FFHQ datasets.

class of generative models that can produce high-quality im-
ages by reversing a stochastic process that gradually adds
noise to an image [20, 44]. DMs have been applied to vari-
ous computer vision tasks [8, 21, 22, 32, 33, 35, 37, 38]. Re-
cently, [36] proposed Latent Diffusion Models (LDM) that
operates on a low-dimensional latent space, significantly
reducing computational demands. [28] introduced multi-
object scene generation, but requires text input. In contrast,
our model can generate images compositionally using ob-
ject concepts directly extracted from images. DMs have
also been used for representation learning [2, 34], but these
representations are unstructured and not modular like ours.

5. Experiments
We evaluate our proposed Latent Slot Diffusion (LSD)

model on unsupervised object segmentation, composi-
tional generation, and image editing. As will be shown,
our model significantly outperforms the state-of-the-art on
datasets with complex texture and background, including
FFHQ [26] which has been beyond the generative capabil-
ity of object-centric models.

Datasets. We evaluate our model on two datasets in-
cluding a synthetic multi-object datasets CLEVRTex [25]
and FFHQ [26], a dataset of high-quality face images that
is beyond the generative capability of current object-centric
models. Unlike previous works in this line that only in-
vestigate low-resolution images, e.g., 128 × 128, we use a
resolution of 256× 256 for all datasets in our experiments.

Baselines. We compare our model against SLATE,
the state-of-the-art object-centric learning and unsupervised
compositional image generation approach. We use its im-
proved version [42], which is more robust in complex
scenes. For a fair comparison with LSD that leverages VQ-
GAN, we also develop a VQGAN-based variant of SLATE
denoted as SLATE+, where its low-capacity dVAE [40] is

Table 1. Segmentation and Generation Performance. We eval-
uate the segmentation quality using mBO, mIoU and FG-ARI
scores and compositional generation quality using the FID score.

(a) Unsupervised Object Segmentation

Segmentation SLATE SLATE+ LSD (Ours)

mBO (↑) 51.24 56.22 66.56
mIoU (↑) 50.04 54.93 65.02
FG-ARI (↑) 43.59 73.42 61.74

(b) Compositional Image Generation

FID ↓ SLATE SLATE+ LSD (Ours)

CLEVRTex 105.83 69.23 29.53
FFHQ 112.38 98.76 27.83

replaced with VQGAN. For all models in this work, we use
OpenImages-pretrained VQGAN models [14].

5.1. Unsupervised Object Segmentation.

In Figure 2, we demonstrate that, without any human an-
notations, LSD learns to segment the CLEVRTex images
into object entities, and the FFHQ images into semantically
meaningful components such as face, hair, clothing, and
background. We further evaluate the segmentation quality
using foreground adjusted rand index (FG-ARI), the mean
intersection over union (mIoU), and the mean best overlap
(mBO). Our results in Table 1 suggest that LSD signifi-
cantly outperforms baselines in mBO and mIoU, achieving
more than 10% gains in both metrics. We also observe that
LSD achieves a lower score on FG-ARI. However, it is im-
portant to note that FG-ARI only evaluates the correctness
of the foreground pixels and does not account for whether
objects are mistakenly considered part of the background or
how well the model is able to segment object boundaries, as
also highlighted by [12, 25].

5.2. Compositional Generation with Visual Concept
Library

Like text-to-image generative models, LSD is able to
take unseen slot-based prompts at test time and compose
new images. As described in Section 3, we first build a con-
cept library. Then, we sample one slot representation from
each visual concept library to form a slot-based prompt. We
then feed the slot-based prompts to the diffusion decoder to
generate the images. This produces scenes with novel ob-
ject layouts and faces with unseen attribute combinations.

We report in Table 1b the FID score [19] as a measure of
the compositional generation quality. Following standard
practice [8], we compute the FID score using 2K generated
images and the full training dataset. Across all datasets,
LSD achieves significantly better FID scores than SLATE
and SLATE+. We further demonstrate the superior compo-
sitional generation quality of LSD in Figure 3.
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Figure 3. Compositional Image Generation with Concept Prompts. Left: We show some compositional generation samples. LSD
provides significantly higher fidelity and clearer details compared to the other methods. Right: We show concept prompts constructed by
composing arbitrary slots from our visual concept library and the corresponding generated image by LSD.

Original Removal Segment Insert BG BG Swap

Figure 4. Slot-Based Object Manipulation. We show the slot-
based image editing ability of our model. In particular, we show
edit operations such as object removal, object extraction, object
insertion, background extraction, and background swapping.

5.3. Slot-Based Image Editing

In addition to generating new images from randomly
sampled slot-based prompts, LSD also allows images edit-
ing through slot manipulation. On the CLEVRTex dataset,
we perform object removal, single-object extraction, object
insertion, background extraction, and background swap-
ping. The results are shown in Figure 4. Object removal and
background extraction are achieved by discarding the corre-
sponding slots. Note that, despite the model not encounter-
ing single-slot conditioning during training, the background
component can be rendered from a single background slot.
In the single object extraction task, we render an individ-
ual object utilizing the corresponding object slot and the
background slot. To demonstrate object insertion and back-
ground swapping tasks, we split the image into top and bot-
tom pairs and interchange the corresponding slot before ren-
dering the full scene. We show that the new object or back-
ground is rendered in the image coherently.

We further explore face replacement on the FFHQ
dataset in Figure 5. LSD decomposes each image into four
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Figure 5. Slot-Based Face Replacement. We show face replace-
ment in the FFHQ dataset, where we compose new images by
combining the face slots from Source-B images with the hairstyle,
clothing, and background slots from Source-A images.

slots, corresponding to face, hairstyle, clothing, and back-
ground. By replacing the face slots of the images, we are
able to coherently change the image while maintaining the
hairstyle, clothing, and background. The resulting images
look realistic, suggesting that LSD can effectively blend
various attributes even when given novel combinations.

6. Conclusion

In this work, we proposed the Latent Slot Diffusion
model which can be seen in two ways: (1) the first model
combining the diffusion models in unsupervised object-
centric learning and (2) the first unsupervised compositional
diffusion model which does not require supervised annota-
tion like text. We show that the proposed model outper-
forms the state-of-the-art transformer-based object-centric
models in various object-centric tasks. Therefore, we be-
lieve that this is a step forward toward object-centric learn-
ing that can handle complex naturalistic images, the current
main challenge.
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