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Figure 1. In contrast to previous latent space optimization (LSO) approaches (middle), our proposed method is able to synthesize smiling
faces with high quality and less artifacts (bottom). Furthermore, the generated images have a significantly higher degree of smiling
compared to the best points in the restricted training dataset (top, restricted to smiling degree < 2) that was used to train the models. LSO
is performed to maximize smiling degree, and FID to the target distribution (unseen smiling degrees 3 — 5) improves from 50.51 to 41.69.

Abstract

In recent years, optimization in the learned latent space
of deep generative models has been successfully applied
to black-box optimization problems such as drug design,
image generation or neural architecture search. Existing
models thereby leverage the ability of neural models to
learn the data distribution from a limited amount of sam-
ples such that new samples from the distribution can be
drawn. In this work, we propose a novel image generative
approach that optimizes the generated sample with respect
to a continuously quantifiable property. While we antici-
pate absolutely no practically meaningful application for
the proposed framework, it is theoretically principled and
allows to quickly propose samples at the mere boundary
of the training data distribution. Specifically, we propose
to use tree-based ensemble models as mathematical pro-
grams over the discrete latent space of vector quantized
VAEs, which can be globally solved. Subsequent weighted
retraining on these queries allows to induce a distribution
shift. In lack of a practically relevant problem, we consider
a visually appealing application: the generation of happily
smiling faces (where the training distribution only contains
less happy people) - and show the principled behavior of
our approach in terms of improved FID and higher smile
degree over baseline approaches.

1. Introduction

Many problems in science and engineering can be for-
mulated as optimization of a costly-to-evaluate black-box
function over high-dimensional or structured input do-
mains. Notable examples are drug design, which typically
requires expensive, time-consuming laboratory experiments
for evaluation, neural architecture search, where every po-
tential network solution with variable complexity must be
trained and tested, or image synthesis, which can be framed
as a black-box optimization problem whose objective func-
tion is a human judgment.

In the last few years, latent space optimization has been
established [7], which tackles black-box optimization prob-
lems in a two-step procedure: First, a deep generative model
(DGM) is trained on the input data, and second, standard
optimization methods such as Bayesian optimization (BO)
[2, 17] are used in the low-dimensional and continuous la-
tent space learned by the DGM. Despite great successes in
application fields such as chemical design [7, | |] and auto-
matic machine learning [15], LSO lacks in performance if
the training data of the DGM mainly consists of low-scoring
points and the true global optimum lies far away from this
data [20]. To address these weaknesses, Tripp et al. [20]
have proposed a method to boost the efficiency and perfor-
mance of LSO by iteratively retraining an encoder-decoder-
based DGM (e.g., a Variational Autoencoder (VAE) [12])



on data points queried along the optimization trajectory
and weighting those data points according to their objec-
tive value. This can be understood as an induced domain
shift of a generative model.

By building on [20], this paper demonstrates the applic-
cability of such distribution shifts induced by weighted re-
training on black-box optimization problems involving un-
structured image data. In particular, we implement [20] on a
generative model involving a discrete latent space, namely
Vector Quantized Variational Autoencoder (VQ-VAE) [21]
which constitute very powerful yet simple to train alterna-
tives to VAEs. In contrast to VAEs, VQ-VAEs can gener-
ate images at high quality without overly smooth details.
Classical black-box optimization approaches such as BO
are typically based on Gaussian processes [16] or neural
networks [18] and thus assume fully continuous input do-
mains. To allow for targeted optimization within the dis-
crete latent space, this work transfers the LSO process from
continuous to categorical input domains by utilizing tree-
based ensembles as surrogate objective model in the latent
space, encoding their predictions as mathematical optimiza-
tion programs and solving those programs deterministically
using state-of-the-art global solvers, see Figure 2. As we
show in Section 3, the proposed framework improves re-
sults compared to continuous LSO via standard VAEs, and
generates high-quality images that have significantly higher
objective function values than the training data.

2. Tree-based Vector Quantized Generator Op-
timization

Although learning representations with continuous vari-
ables has been the focus of many previous works [3,4,22],
[21] has demonstrated that discrete representations learned
by VQ-VAEs capture important features of the data with a
more natural fit for images. Thus, we provide a solution to
transfer the LSO from continuous to discrete latent spaces
in order to leverage the expressiveness of VQ-VAEs to gen-
erate high-scoring images with good quality. Then, we ap-
ply weighted retraining [20] to induce a distribution shift in
the generator distribution. These two steps can be alternated
until convergence to train generators with desired target dis-
tributions.

2.1. Discrete latent variables in VQ-VAEs

The full VQ-VAE model [21] consists of a latent em-
bedding space &£, an encoder e and a decoder d, where £
contains K learnable vectors & € RP i € {1,...,K}.
The shared embedding space £ and the encoder e allow
to represent each input image x € RF*WX3 a5 a grid
z € {1,..., K} of discrete latent variables, where the
components

zij = argmin [e(x); ;. — &
le{1,....K}

are obtained by vector quantization of the encoded image
e(z) € RM*wXD wrt. the Euclidean distance. H x W
and i x w describe the spatial extent of the input and latent
representation, respectively.

2.2. Global Optimization in Discrete Latent Spaces

Our method includes optimization in the discrete latent
space z € {1,...,K}"** of a VQ-VAE, which is pre-
trained on some input data X. To this end, a latent ob-
jective model h(-) is constructed to approximate the black-
box function f(-) at the output of the decoder d(-), i.e.,
h(z) =~ f(d(z)) for all z € {1,...,K}"™. h can be
trained by using the encoder e and the learned embedding
space £, which together map every f-evaluated input im-
age x € X to a corresponding discrete latent representation
z=e(x) € Zx C{1,..., K}>v,

When dealing with categorical feature spaces such as
{1,..., K}"*"  tree-based ensemble models like random
forests [ 1] or gradient-boosting trees [5] are popular choices
for h, since they naturally support various data types. Thus,
we train a decision tree ensemble model to predict the ob-
jective value of a given image sample from its discrete
latent representation. Interestingly, [19] propose an intri-
cate approach that allows to encode the trained tree-based
model with a mixed-integer optimization (MIO) formula-
tion which allows the optimization of the discrete latent
code w.r.t. the objective value, the tree-based model has
been trained to predict. Please refer to [19] for the theo-
retical proof. By solving the resulting MIO program deter-
ministically using a global solver [13], h can be optimized
to determine the next latent query point z. During latent
optimization, the solution 2 has to be restricted to stay suf-
ficiently close to latent representations of the training data.
Otherwise, without any constraints on the latent variables,
the decoded version & = d(Z) of the query point Z most
likely has bad quality for the following reason: values of
those latent variables not having an impact on image regions
that determine the objective function value can arbitrarily
be chosen in the optimization process, which may lead to
highly distorted image features. We address this problem as
follows: First, a single training sample z,. € X" is randomly
drawn and mapped to its latent representation z,.. Second,
only those ¢ € N latent variables having the highest feature
importances under the trained tree-based model are free to
be globally optimized, while the remaining hw — ¢ variables
are fixed by being set to the respective entries of z,. Tak-
ing into account the optimization result Z together with the
corresponding objective function evaluation f(Z) of its de-
coded version & = d(2), h is refit after every iteration.

2.3. Weighted Retraining

Subsection 2.2 introduces a technique to perform LSO in
discrete latent spaces. However, identified in [20], the un-
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Figure 2. Proposed Framework. a) The encoder and decoder of a VQ-VAE are initially pre-trained and periodically fine-tuned on weighted
data X'. Images are encoded in a discrete latent space. b) Optimization is performed in the discrete latent space: a tree-based ensemble
model is learned from the latent training data representations Zx, encoded as a constrained mixed integer optimization problem and
globally solved to determine the next (optimal) query point Z according to the black-box evaluation function. This procedure is repeated r
times before the VQ-VAE is fine-tuned on the queried data points. For this, the corresponding decoded images & = d(Z) are added to the

training data and the weight for each training image is updated.

derlying DGM does not necessarily learn a latent space that
is amenable to efficient optimization of the objective func-
tion, especially in cases where the global optimum is far
away from the training data. To resolve this issue, we fol-
low [20] and weight the training data points X = {x;}¥,
according to their objective values { f(z;)}: the higher a
value f(z), the more probability mass the training distribu-
tion should place on the corresponding input point x. The
weighting scheme requires assigning a weight w(z;) € R
with Ziil w(x;) = 1 for all z; € X using some weight
function w. In this work, we adopt the rank-based function
introduced in [20].

To propagate information on new points acquired during
the iterative LSO process to the VQ-VAE, where it could
potentially help to uncover new promising regions that an
optimization algorithm can exploit, the VQ-VAE is period-
ically fine-tuned after every € N LSO iterations.

3. Experiments

Here, we provide an empirical evaluation of the proposed
discrete LSO with weighted retraining, as introduced in
Section 2. First, we define a challenging optimization task
using the famous face dataset CelebA [14]. Based on this
image synthesis task, we evaluate our methods’s ability to
compete with continuous LSO via standard VAEs [20]. For
the underlying VQ-VAE, we use the CNN encoder-decoder
architecture introduced in [21]. Please refer to the appendix
for more details.

Optimization task. We employ CelebA 64 x 64 for an

image synthesis task which can be viewed as black-box op-
timization problem. Our goal is to generate smiling faces by
optimizing for the respective attribute degree in the space of
colored 64 x 64 face images. To represent the smiling at-
tribute on a continuous scale, we make use of the extended
CelebA-Dialog dataset [ 10], which includes fine-grained la-
bels for five selected CelebA attributes that cannot be accu-
rately described by binary labels. In particular, the smiling
attribute is divided into six levels (0 — 5) that describe the
degree in ascending order. For unseen face images, we esti-
mate the degree of smiling by using a probability-weighted
average fsmi]e : R64x64%3 3 10 5] of class predictions com-
ing from the ResNet-50 [&] classifier used in the official
implementation of [10], which is pre-trained on CelebA-
Dialog.

We discard points with high objective values from the
training data to make the problem more challenging and to
represent the situation where the optimum (degree 5) lies far
outside the training distribution. Specifically, only images
with a smiling degree < 2 are kept in the training set.

Implementation details. Throughout this work, we as-
sume a query budget of 500 and a retrain frequency of
r = 5. For the underlying VQ-VAE, we use the CNN
encoder-decoder architecture as in [21]. We assume a dis-
crete latent space of size 8 x 8 (64 latent variables in total).
Moreover, we consider K = 256 embedding vectors with
a dimensionality of D = 64 each. The tree-based model h
is chosen to be an ensemble of 800 gradient-boosted regres-
sion tree and an interaction depth of 2, following [19]. The



Top50 score

//’ —— Highest degree in training data
off —— VQ-VAE with WR
051 / —— VQVAE without WR
\ / VAE with WR
- == VQ-VAE without optimization
'VAE without optimization

0 100 200 300 400 500
Number of evaluations of fey,

b)

60 4 x

551

FID
X

50 4 J x

45 4

: : -
3 4 5
Smiling Degree

Figure 3. Quantitative comparison between discrete and continuous LSO variants: VQ-VAE with weighted retraining (green), VQ-VAE
without weighted retraining (red), and VAE with weighted retraining (yellow). Evaluation metrics: a) Top50 score function, where the
blue dashed line depicts the best smiling degree in the training data. VQ-VAE as well as weighted retraining improve the degree of smiling
substantially. b) FID scores, where the dashed lines show the respective scores of testing against the subset of CelebA images having an
unseen smiling degree (3 — 5), and the markers show testing against each training data subset with the corresponding unseen smiling degree
(3, 4, and 5; background images depict training data samples for these smiling degrees). In all cases, VQ-VAE with weighted retraining

achieves the best result.

minimum number of samples in one leaf equals 20, and the
maximum number of leaves per tree is set to 5.

Continuous LSO with VAEs is implemented by a neural
network as latent objective model, as in [18]. Motivated
by [6], local optimization in the continuous latent space
is constrained using ex-post density estimation via Gaus-
sian Mixture Models. Optimization is carried out using the
SLSQP algorithm [13].

Evaluation metrics. Following common practice for
BO [17, 20], we show the worst of the 10 and 50 best
novel smiling degree predictions obtained up until query
m = 1,...,500, which is denoted as Topl0 and Top50
score function, respectively. To ensure statistical signifi-
cance, the mean £ one standard deviation across 20 runs
with different random seeds is reported. Furthermore, we
use FID scores [9] as quantitative assessment of the qual-
ity of generated images. Since our goal is to find faces that
have a higher smiling degree than the best point in the train-
ing data, we compute FID scores between all 10,000 gen-
erated images from the 20 runs and the subset of CelebA
faces having a smiling degree between 3 and 5.

Results on smiling face synthesis. Figure 3 presents
quantitative comparison between our approach and contin-
uous LSO via standard VAEs. Corresponding visual results
are shown in Figure 1. Even if weighted retraining is ap-
plied, the Top50 scores resulting from LSO with VAEs are
strictly below the value 2.0 that corresponds to the best
training images (mean final score: 1.70). Even without
weighted retraining of the VQ-VAE, our method outper-
forms VAEs by a large margin (mean final score: 2.42).
Weighted retraining further improves the final Top50 score
from 2.42 to 2.50 on average.

Moreover, the FID results show that our method success-

fully leverages the expressiveness of VQ-VAEs to gener-
ate images with higher quality compared to standard VAEs.
The FID score can be decreased by 21%, from 50.51 to
41.69. Again, weighted retraining hereby has a positive ef-
fect and leads to a significant improvement of 5%. In ad-
dition, we tested against three separate subsets containing
all images having a smiling degree of 3, 4, and 5, respec-
tively, to detect potential biases among the generated faces.
However, for all considered LSO variants, the results are as
expected: higher smiling degrees in the target distribution
lead to higher FID scores. Overall, the level of FID scores
is relatively high, which can likely be attributed to the fol-
lowing reason: the target distribution (degrees 3 — 5) is dif-
ferent from the distribution the VQ-VAE is pre-trained on
(degrees 0 — 2), which prevents direct comparison to other
generative models that are explicitly designed and trained
to generate samples that resemble the given training data.

4. Conclusion

We propose a method for efficient black-box optimiza-
tion in the discrete latent space of VQ-VAEs, which com-
bines (i) choosing a tree-based ensemble as latent objec-
tive model, (ii) encoding its predictions as an MIO prob-
lem that is solved globally to determine the next query point
and (iii) iteratively fine-tuning the underlying VQ-VAE on
weighted data. With the challenging task of generating
smiling faces that are not contained in the training distribu-
tion, we demonstrate that our method notably outperforms
continuous LSO with VAEs in terms of both image qual-
ity and optimization of the objective function. To the best
of our knowledge, this is the first work that successfully ap-
plies LSO in discrete latent spaces on image synthesis tasks.
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A. Appendix
A.l. Architectures and Implementation

For the underlying VQ-VAE, we use the CNN encoder-decoder architecture as introduced in [21]. We assume a discrete
latent space of size 8 x 8, which results in 64 latent variables in total. Moreover, we consider K = 256 embedding vectors
with a dimensionality of D = 64 each. The tree-based model h is chosen to be a gradient-boosting regression tree with an
ensemble of 800 decision trees and an interaction depth of 2, following [19]. Furthermore, the minimum number of samples
in one leaf equals 20, and the maximum number of leaves per tree is set to 5. During LSO, we want to preserve as much
image quality as possible. Therefore, we will not optimize over all 64 latent variables but only over those that are most
important for the objective value we are optimizing for. Thus, we leverage the feature importance estimated by the decision
tree ensemble to determine latent variables to optimize. An ablation of the number of latent variables used for optimization
is given in Section A.2.

Continuous LSO with VAEs is implemented by a neural network as latent objective model, as in [18]. Motivated by [0],
local optimization in the continuous latent space is constrained using ex-post density estimation via Gaussian Mixture Models,
and new query points are restricted to stay sufficiently close to the estimated distribution. Optimization is carried out using
the SLSQP algorithm [13].

A.2. Ablation study

During LSO, we want to preserve as much image quality as possible. Therefore, we will not optimize over all 64 latent
variables but only over those that are most important for the objective value we are optimizing for. Here, we measure the
impact of the number ¢ of free LSO variables on the performance of our proposed method. For this purpose, we test 4, 8, and
16 free variables for 20 optimization runs each. FID scores as well as final Top10 and Top50 scores after 500 optimization
iterations are reported in Table 1.

FID Top10 Top50

4 4269 2.724+0.07 242+0.04
8 41.69 2.85+0.07 2.50+0.05
16 43.70 2.884+0.06 2.58+0.02

Table 1. Ablation study results. Top10 and Top50 scores are reported as mean final score =+ one standard deviation after reaching the
query budget of 500.

As we can observe, choosing t = 8 hits a sweet spot: while generated faces have significantly lower quality if ¢ is
increased (FID: 41.69 vs. 43.70), a reduction of ¢ leads to lower smiling degrees (Top10: 2.85 vs. 2.72). We set ¢ to 8 for all
experiments.

A.3. Details on VQ-VAE

Stage  Layer Input Shape Output Shape # Filters  Kernel Size  Padding  Stride
(Ho, Wo, Do) (Hi, Wi, D1) K F P S
1 Conv (64,64, 3) (32,32,64) 64 4 1 2
Leaky ReLu
2 Conv (32,32, 64) (16,16, 128) 128 4 1 2
Leaky ReLu
3 Conv (16,16, 128) (8,8,256) 256 4 1 2
Leaky ReLu
4 Conv (8,8,256) (8,8,256) 256 3 1 1
Leaky ReLu
5  Residual Block (8,8,256) (8,8,256)
6  Residual Block (8,8,256) (8,8,256)
7  Conv (8,8,256) (8,8,64) 64 1 0 1
Leaky ReLu

Table 2. Encoder architecture of VQ-VAE



Stage  Layer Input Shape Output Shape # Filters  Kernel Size  Padding  Stride = O-Padding
(Ho, Wy, Dg) (Hy, W1, D1) K F P S o

1 Conv (8,8,64) (8,8,256) 256 3 1 1
Leaky ReLu

2 Residual Block (8,8,256) (8,8,256)

3 Residual Block (8,8,256) (8,8,256)

4 ConvT (8,8,256) (16,16, 128) 128 4 1 2 0
Leaky ReLu

5  ConT (16,16, 128) (32,32,64) 64 4 1 2 0
Leaky ReLu

6 ConvT (32,32, 64) (64,64, 3) 3 4 1 2 0

Table 3. Decoder architecture of VQ-VAE

Hyperparameter Value
Latent Dimension 64
Embedding Dimension D 64
# Categories K 256
Batch Size 128
# Epochs 70
Optimizer Adam
Learning Rate 0.001
B8 0.25

Table 4. Training hyperparameters of VQ-VAE



A.4. Details on VAE

Stage  Layer Input Shape Output Shape # Filters  Kernel Size  Padding  Stride
(Ho, Wo, Do) (Hi, W1, D1) K F P S
1 Conv (64,64, 3) (32,32,32) 32 3 1 2
Leaky ReLu
BatchNorm
2 Conv (32,32, 32) (16,16, 64) 64 3 1 2
Leaky ReLu
BatchNorm
3 Conv (16,16, 64) (8,8,128) 128 3 1 2
Leaky ReLu
BatchNorm
4 Conv (8,8,128) (4,4, 256) 256 3 1 2
Leaky ReLu
BatchNorm
5  Conv (4,4,256) (2,2,512) 512 3 1 2
Leaky ReLu
BatchNorm
6  Flatten (2,2,512) 2048
Dense 2048 128
Table 5. Encoder architecture of VAE
Stage  Layer Input Shape Output Shape # Filters  Kernel Size  Padding  Stride = O-Padding
(Ho,Wo, Do)  (Hy, Wi, D1) K F P S o
1 Dense 64 2048
Leaky ReLu
BatchNorm
2 Unflatten 2048 (2,2,512)
ConvT (2,2,512) (4,4,256) 256 3 1 2 1
Leaky ReLu
BatchNorm
3 ConvT (4,4,256) (8,8,128) 128 3 1 2 1
Leaky ReLu
BatchNorm
4  ComT (8,8,128) (16,16, 64) 64 3 1 2 1
Leaky ReLu
BatchNorm
5  ComvT (16, 16, 64) (32, 32,32) 32 3 1 2 1
Leaky ReLu
BatchNorm
6  ConvT (32,32,32) (64, 64, 32) 32 3 1 2 1
Leaky ReLu
BatchNorm
7 Conv (64, 64, 32) (64,64, 3) 3 3 1 1

Table 6. Decoder architecture of VAE

Hyperparameter  Value
Latent Dimension 64
Batch Size 64
# Epochs 30
Optimizer Adam
Learning Rate 0.0001
Butar 107°
Bﬁnal 0.215
S Warm-up 5000
S Step 1.1
[ Step Frequency 50

Table 7. Training hyperparameters of VAE



A.5. Details on dataset

We focus on the facial part of CelebA images by using pre-trained Multitask Cascaded Convolutional Networks (MTCNN)
[23] to localize faces in the input plane, and cropping images according to the predicted bounding box. Furthermore, the data
is resized to 64 x 64 via resampling using pixel area relation.
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