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Abstract

Generative models have recently undergone significant
advancement thanks to diffusion models, which use effective
guidance techniques like classifier or classifier-free guid-
ance to trade-off fidelity and diversity. However, these meth-
ods are not capable of guiding a generated image to be
aware of its geometric configuration, e.g., depth, which hin-
ders their application to areas that require a certain level
of depth awareness. To address this limitation, we pro-
pose a novel guidance method for diffusion models that uses
self-estimated depth information derived from the rich in-
termediate representations of diffusion models. Concretely,
we first present label-efficient depth estimation framework
using internal representations of diffusion models. Subse-
quently, we propose the incorporation of two guidance tech-
niques based on pseudo-labeling and depth-domain diffu-
sion prior during the sampling phase to self-condition the
generated image using the estimated depth map. Our ex-
periments show that our method effectively guides diffusion
models to generate geometrically plausible images.

1. Introduction
Diffusion models [10, 16, 19, 24] have recently received

much attention and have shown remarkable generation qual-
ity and diversity. However, those works hardly consider
geometrical configuration during the image generation pro-
cess. As a result, conventional diffusion models often gen-
erate geometrically implausible images that contain am-
biguous depth and cluttered object layouts which can be
visually unappealing but also unsuitable for downstream
tasks, e.g., robotics and autonomous driving [28, 30].

While some approaches [7, 11] drive the sampling pro-
cess of diffusion models toward a class-specific distribu-
tion, limited attention has been given to guiding diffusion
models towards a geometrically plausible image distribu-
tion. To address this, we propose Depth-Aware Guidance
(DAG), which incorporates depth awareness into diffusion
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models. Training both diffusion models and depth predic-
tors from scratch is challenging, so we use a pretrained dif-
fusion model’s rich representations to train depth predictors,
extending our knowledge of diffusion models’ representa-
tion capabilities in depth prediction tasks.

Furthermore, by leveraging the label-efficient depth pre-
dictors, we propose two depth-aware guidance strategies
for geometric awareness: depth consistency guidance and
depth prior guidance. Depth consistency guidance (DCG)
uses consistency regularization [2,12,21] to guide the image
towards improving the poor prediction by treating the better
prediction as a depth pseudo-label. Depth prior guidance
(DPG) utilizes an additional pretrained diffusion U-Net as
a prior network [9, 17] to provide guidance during the sam-
pling process and explicitly injects depth information into
the sampling process of diffusion models.

To evaluate our framework, we conduct experiments on
indoor and outdoor scene datasets [15,31] and propose new
metric from the perspective of depth estimation tasks to cap-
ture geometric awareness of the generated images. To the
best of our knowledge, our work is the first attempt to uti-
lize depth information during the sampling process to make
image generation more aware of geometric configuration.

2. Methodology

2.1. Label-Efficient Training of Depth Predictors

In order to generate depth-aware images with diffusion
guidance in a straightforward way as in [7], we need either
a large amount of image-depth pairs or an external large-
scale depth estimation network trained on the noised im-
ages, both of which are challenging to acquire. To address
this problem, we propose to re-use the rich representations
learned with DDPM [10] that contain depth information of
images to estimate the depth.

Network architecture. Recent research has shown that
the internal features of the networks trained with diffusion
models can encode semantic information [1, 4, 29], and our
contribution builds upon this by incorporating depth infor-
mation into the framework.



Figure 1. Visualizations of the sampling process of our frame-
work: (from top to bottom) predicted images, depth predictions
from the strong-branch predictor, and depth predictions from the
weak-branch predictor. As exemplified, the strong-branch predic-
tor gives robust depth predictions even at the early stage.

For label-efficient depth estimation, we utilize a pixel-
wise shallow MLP regressor. Specifically, we acquire the
internal features ft(k) ∈ RC(k)×H(k)×W (k) from the output
of k-th decoder layer in the diffusion U-Net, where C(k)
denotes the channel dimension and H(k) ×W (k) denotes
the spatial resolution of the k-th layer of the U-Net decoder.
Then, we form the depth map by querying the MLP blocks
pixel-by-pixel, where the depth map can be formulated as:

dt(k) = MLP(ft(k)). (1)

In this setting, it may be better to use more features from
different U-Net layers than only using the feature from one
layer [4]. Hence, we extract features from multiple lay-
ers and concatenate them in a channel dimension to obtain
gt = [ft(1), ft(2), · · · , ft(d)], where d is the total number
of selected layers. These features are then passed to the
pixel-wise MLP depth predictor. Additionally, we append
a time-embedding block similar to the diffusion U-Net’s
time-embedding module to the depth predictor input, en-
abling prediction at any timestep and throughout the sam-
pling process. Applying it to Eq. 1, we can achieve

dt = MLP(gt, t). (2)

Loss function. We train the depth estimator only with
the frozen features from the diffusion U-Net by using the
ground-truth depth map y with L1 loss as

Ldepth = ‖dt − y‖1. (3)

This whole procedure allows us to achieve reasonable
label-efficient prediction performance in the depth domain,
as demonstrated in Fig. 2(b). The depth prediction scheme
allows us to predict the depth map for the intermediate im-
ages under generation in arbitrary sampling steps, as shown
in Fig. 1, since the representations of diffusion models are
inherently learned with the timesteps.
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Figure 2. Quantitative comparisons of depth prediction perfor-
mance. Evaluation of depth estimation performance for varying
timesteps with (a) different U-Net blocks and (b) training image
numbers. The x-axis shows timesteps and the y-axis shows depth
estimation accuracy.

Figure 3. Visualization of depth estimation on the ImageNet
dataset [6]. The images in the upper row are from ImageNet,
and images in the middle row are estimated depth maps using our
depth estimator which takes the inner features from the U-Net of
the Latent Diffusion [19] as input. The prediction is done with
noisy images.

2.2. Depth Guided Sampling for Diffusion Model

To ensure plausible depth maps from generated images,
we encourage the predicted depth maps to be accurate
during sampling. To this end, we propose two guidance
techniques that use utilize the aforementioned efficiently-
trained depth predictors in Sec. 2.1. Because of the ab-
sence of a pre-determined label, we cannot naively com-
pute the loss for guiding the sampling process. Therefore
we build two alternative loss functions that act as guidance
constraints. We discuss the details in the following sections.
The general form of guidance equation is formulated by:

xt−1 ∼ N (µθ(xt)− ω∇xt
Ldepth,Σθ(xt)). (4)

Depth consistency guidance. Pseudo-labeling [13, 25]
can a be a possible approach for depth estimation in the
absence of ground truth information, but generating con-
fident predictions for pseudo-labeling is challenging. In-
spired by FixMatch [25], our method combines pseudo-
labeling [13] with consistency regularization [2, 21], using
weakly-augmented labels as pseudo-labels to enhance per-
formance. We propose that richer representations lead to
more accurate depth maps, and thus we consider predictions
from multiple feature blocks as strong branch predictions
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Figure 4. Qualitative comparison on LSUN-bedroom [31]. We
visualize (top) the samples without guidance ((a), (c), (e)) and
with depth-aware guidance ((b), (d), (f)), and their corresponding
depths [18] (middle) and surface normals [3] (bottom).

and those from fewer features as weak branch predictions.
These strong branch predictions are more informative and
suitable for use as robust pseudo-labels (Fig. 1).

In specific, we use the features gW = [ft(6)] for weak
branch features, and gS = [ft(2), ft(4), ft(5)ft(6), ft(7)]
for strong branch features. To account for the different
channel dimensions of these two aggregated features, we
design two asymmetric predictors: MLP-S and MLP-W.
The first predictor receives more features from the U-Net
block, while the second one receives fewer features, and we
train them together. We feed the collected features to these
MLPs and obtain the depth map predictions:

dSt = MLP-S(gSt , t), dWt = MLP-W(gWt , t). (5)

As stated above, we treat dSt as a pseudo-label and dWt as a
prediction then compute the loss using a consistency loss
between two predicted dense maps. We apply the stop-
gradient operation to the strong features, preventing the
strong prediction from learning the weak prediction [5, 25].
The gradient of the loss with respect to x flows through the
diffusion U-Net and guides the sampling process as done
in [7]. This process can be formulated as

Ldc = ‖stopgrad(dSt )− dWt ‖22, (6)

where stopgrad denotes the stop-gradient operation.

Depth prior guidance. We also propose another guid-
ance method, which we call depth prior guidance, to inject
depth prior into the sampling process. The pretrained dif-
fusion model can effectively refine the noised distributions
to realistic distributions [14], or it can help to optimize the
noised initialization of the data to match with the real data
by utilizing the knowledge of the diffusion model [9, 17].
Therefore we train another small-resolution diffusion U-Net
εφ on the depth domain and use it as our prior for the second
guidance method. As described in Sec. 2.1, we can extract

Figure 5. Visualization of point cloud representation obtained
by depth information. We compare the results generated from
the baseline without (odd rows) and with (even rows) our guid-
ance by showing images and transforming them into point cloud
visualizations in four different views.

the features from the decoder part of the image-generating
U-Net to estimate the corresponding depth map using MLP
depth predictor. Then, we inject noise to the depth predic-
tion dS0 using a forward process of diffusion like:

dSτ =
√
ᾱτd

S
0 +
√

1− ᾱτη, η ∼ N (0, I), (7)

where τ is the timestep that is used in a prior diffusion
model. After adding noise to the depth prediction, we feed
it to our prior network to estimate the added noise. Then we
calculate the gradient of the mean-squared error between
the added noise and the predicted noise concerning x. This
process is then defined as:

Ldp = ‖η − εφ(dSτ ))‖22. (8)
Overall guidance. To integrate the proposed DCG and
DPG, we calculate the gradients of Eq. 6 and 8. As in [7],
our overall sampling can be written as:

xt−1 ∼ N (µθ(xt)− ωdc∇xtLdc − ωdp∇xtLdp,Σθ(xt)).
(9)

where ωdc and ωdp denotes the DCG scale and DPG scale
respectively.

3. Experiments
3.1. Experimental Settings

To evaluate the performance of our proposed method,
we conduct experiments on LSUN-Bedroom and LSUN-
Church [31] for both depth estimation and image genera-
tion tasks. As there are no ground-truth depth labels avail-
able in the LSUN dataset, we generate pseudo-labels using



Methods DPG DCG dFID (↓)

Baseline - - 15.71

DAG
X - 14.18
- X 15.27
X X 13.93

Table 1. Quantitative Results on the LSUN-bedroom [31].

Methods DPG DCG dFID (↓)

Baseline - - 17.69

DAG
X - 17.43
- X 17.40
X X 17.31

Table 2. Quantitative results on the LSUN-church [31].

a DPT [18] pretrained on the NYU-Depth dataset [23] and
utilize them for training the depth estimator.

We incorporate geometric awareness in the image gener-
ation process and introduce a novel performance metric for
models that generate depth-guided images. First, we predict
the depth maps of generated images using Dense Prediction
Transformer (DPT) [18]. To measure the reality of the depth
estimation map, we directly evaluate FID [22] with depth
images and denote it dFID. To make a fair comparison, we
build the reference batch following [7] with the depth pre-
dictions of images from the dataset with DPT-Hybrid.

3.2. Experimental Results

Depth prediction performance. First, to provide guid-
ance for synthesizing images, we train the predictor for
timesteps t < 800. We evaluate the depth performance
using the depth accuracy metric (δ < 1.25), and the
results are shown in Fig. 2. Based on the results in
Fig. 2 (a), we choose to use the middle feature blocks
{ln} = {2, 4, 5, 6, 7}, which show relatively high accuracy.
In DCG, we also choose the feature maps by sorting the
layer by accuracy, and the result is S = {2, 4, 5, 6, 7} and
W = {6}. Fig. 2 (b) illustrates the depth prediction ac-
curacy with respect to the number of training images and
evaluated timesteps. We chose 100 images for the depth
predictor since the accuracy gain from using more images
is relatively small. We also show the scalability of our depth
predictor with the latent diffusion [19] backbone in Fig 3.

Quantitative results. We compare the results of evalua-
tion metrics for LSUN-Bedroom and LSUN-Church [31]
between unguided ADM [7] and ADM with our guidance,
and the results are shown in Tab. 1 and 2 respectively.
The results indicate that ADM guided by DPG or DCG
shows better performance than our baseline in dFID, a met-
ric used to evaluate performance in the depth domain. In
the appendix, we show that FID is inadequate for measur-
ing depth-awareness.

Figure 6. Qualitative results on LSUN-church [31] dataset.
First row is unguided samples from DDIM [26], and the second
row is guided samples using our guidance method, called depth-
aware guidance (DAG).

Method δ > 1.25 (↑) AbsRel. (↓)

Supervised 79.06 0.144

Unguided data 72.55 0.185
DAG-based data 77.54 0.151

Table 3. Application of learning monocular depth estimation.
We train the depth estimation model from scratch using U-Net [20]
based backbone network with our synthesized data.

Qualitative results. We compare the result from ADM
with and without our guidance method in Fig. 4. We show
both generated images and predicted depth maps using
DPT, which demonstrates more robust depth prediction with
our method. We also demonstrate the effectiveness of our
method in 3D scene understanding through surface normal
estimation and point cloud visualization (Fig. 5). Compared
to the baseline, our predictions have clearer boundaries and
higher level of detail. Fig. 6 shows qualitative comparisons
on LSUN-Church, where our guidance method preserves
geometric characteristics effectively.

Application for monocular depth estimation To im-
prove the effects of our generation as unlabeled data, we
leverage the guided images and corresponding depth maps.
We train the U-Net-based depth estimation network [8] and
evaluate the metrics with the NYU-Depth datasets [23]. We
compare the training results using reference data, unguided
generated results, and our generated results. For the depth
evaluation, we use accuracy under the threshold (δ < 1.25)
and absolute relative error (AbsRel). Tab. 3 shows that the
images generated by DAG-based data are more helpful in
training the depth predictor than the unguided samples set.

4. Conclusion
In this paper, we propose a label-efficient method for pre-

dicting depth maps of images generated by the reverse pro-
cess of diffusion model using internal representations. We
also introduce a novel guidance scheme to guide the im-
age to have a plausible depth map. In addition, we present
a evaluation metric that effectively represents depth aware-
ness using pretrained depth estimation networks.
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Appendix: Self-Predicted Depth-Aware Guidance with Diffusion Models

Guidance scale. We study the relationship between the
guidance scale and image quality in terms of dFID for each
DCG and DPG. Fig. 7 shows the tendency of the metrics
versus scales of each guidance. As depicted in Fig. 7, DCG
and DPG obtains the best results at ωdc = 40 and ωdp =
40 in dFID, respectively. Therefore, we treat this scale as
default during the experiment.

Resolution of the prior network. In our second guidance
method, DPG, we need to train a diffusion network to give
a prior for condition image. We test three resolutions for
the pretrained prior diffusion network, and the quantitative
results are shown in Tab. 4. The 128× 128 outperforms the
other resolution in dFID. But due to limitations in computa-
tion cost for the sampling process, so we choose the 64×64
for the prior diffusion network. As our output depth map
has a resolution of 64 × 64, we interpolate the depth map
when fed to the prior network.

Depth FID. To compute the FID of the depth domain, we
first estimate the depth map using the NYU-Depth [23] pre-
trained depth estimator DPT-Hybrid [18], which is available
in the official repository. Then, identical to the original FID,
we compute the Fréchet distance of embeddings collected
from depth images using the Inception v3 model [27]. We
show examples in Tab. 5 where FID is good but the geomet-
ric realism is limited. It demonstrates that the FID is inap-
propriate for measuring geometrical awareness. To address
this problem, we propose dFID. DAG, our proposed guid-

Method dFID (↓) FID (↓)

Baseline 26.77 18.24

32× 32 25.14 19.86
64× 64 25.96 18.85

128× 128 25.07 21.69

Table 4. Ablation study of the resolution of the prior network.
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Figure 7. Comparison of dFID with respect to the guidance
scales of DCG and DPG.

Table 5. Comparison of generated samples from ADM. The im-
ages in the left two columns are examples of samples from ADM
without our guidance method, DAG, and the images in the right
two columns are examples from ADM using our method.

ance method, improves both the visual quality of geometric
realism and the dFID metric. Additionally, we observed a
trade-off between dFID and FID to some extent. This can be
interpreted as a trade-off between structure awareness and
texture quality, which is similar to diversity-fidelity trade-
off shown in previous works of guidance as in ADM [7].
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