
Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation

Susung Hong* Donghoon Ahn* Seungryong Kim

Korea University, Seoul, Korea

Abstract

The view inconsistency problem in score-distilling text-
to-3D generation, also known as the Janus problem, arises
from the intrinsic bias of 2D diffusion models, which leads
to the unrealistic generation of 3D objects. In this work,
we explore score-distilling text-to-3D generation and iden-
tify the main causes of the Janus problem. Based on these
findings, we propose two approaches to debias the score-
distillation frameworks for robust text-to-3D generation.
Our first approach, called score debiasing, involves gradu-
ally increasing the truncation value for the score estimated
by 2D diffusion models throughout the optimization process.
Our second approach, called prompt debiasing, identifies
conflicting words between user prompts and view prompts
utilizing a language model and adjusts the discrepancy be-
tween view prompts and object-space camera poses. Our
experimental results show that our methods improve realism
by significantly reducing artifacts and achieve a good trade-
off between faithfulness to the 2D diffusion models and 3D
consistency with little overhead.

1. Introduction

Recently, significant advancements have been made in
the field of zero-shot text-to-3D generation [8], particularly
with the integration of score distillation techniques [10, 11,
16, 27] and diffusion models [3, 5, 9, 18, 19, 23–25] to op-
timize Neural Radiance Fields (NeRF) [13]. These meth-
ods provide a solution for generating a wide range of 3D
objects from a textual input, without requiring 3D supervi-
sion. Despite their considerable promise, these approaches
often encounter a view inconsistency problem. One of the
most notable problems is the multi-face issue, also referred
to as the Janus problem, which is illustrated in the “Base-
line” of Fig. 1. This problem constrains the applicability of
the methods [10, 11, 16, 27], but the Janus problem is rarely
formulated or carefully analyzed in previous literature.

To address the view inconsistency problem, we delve
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“a kangaroo wearing boxing gloves”

“a small kitten”

“a colorful toucan with a large beak”

Figure 1. Comparison between the baseline (SJC [27]) and
ours. Our debiasing methods qualitatively reduce view inconsis-
tencies in zero-shot text-to-3D and the so-called Janus problem.

into the formulation of score-distilling text-to-3D genera-
tion presented in [10, 11, 16, 27]. We generalize and ex-
pand the assumptions about the gradients regarding the
3D parameterization in previous works, such as DreamFu-
sion [16] and Score Jacobian Chaining (SJC) [27], and iden-
tify the main causes of the problem within the estimated
score. The score further derives the unconditional score
and pose-prompt gradient, both of which interrupt the es-
timation of unbiased gradients concerning the 3D volume.
Therefore, refining them is necessary for generating more
realistic and view-consistent 3D objects.

Building on this concept and drawing inspiration from
gradient clipping [12] and dynamic thresholding [19], we
propose a score debiasing method that performs dynamic
score thresholding. Specifically, this method cuts off the
score estimated by 2D diffusion models to mitigate the im-
pact of erroneous bias. With this debiasing approach, we re-
duce artifacts in generated 3D objects and alleviate the view
inconsistency problem by striking a balance between faith-
fulness to 2D models and 3D consistency. Furthermore, we



find that by gradually increasing the truncation value, which
aligns with the coarse-to-fine nature of generating 3D ob-
jects [4,13], we achieve a better trade-off for 3D consistency
without significantly compromising faithfulness.

On the other hand, as the first attempt to address the
bias issue in prompts, we further present a prompt debiasing
method. In contrast to prior works [10, 16, 27] that simply
concatenate a view prompt and user prompt, our method
reduces inherent contradiction between them by leveraging
a language model trained with a masked language model-
ing (MLM) objective [2], computing the pointwise mutual
information. Additionally, we decrease the discrepancy be-
tween the assignment of the view prompt and object-space
pose by adjusting the range of view prompts. These en-
able text-to-image models [14, 18, 19] to predict accurate
2D scores, resulting in 3D objects that possess more realis-
tic and consistent structures.

2. Score Distillation and the Janus Problem
SJC [27] defines the probability density function of pa-

rameters θ of 3D volume (e.g., NeRF [13]) as an expecta-
tion of the likelihood of 2D rendered images zθ from uni-
formly sampled object-space viewpoints. Unlike this defi-
nition, our approach defines the density function of the pa-
rameters θ as a product of conditional likelihoods given a
set of uniformly sampled viewpoints Π and user prompt ω.
This can be expressed as:

p̃3D(θ) =
∏
ξ∈Π

p2D(zθ|ξ, ω), (1)

where p2D and p̃3D denote the probability density of
2D image distribution and unnormalized density of 3D
parametrizations, respectively. By using this formulation,
we avoid using Jensen’s inequality, in contrast to [27]. Ap-
plying the logarithm to each side of the equation yields:

log p̃3D(θ) =
∑
ξ∈Π

log p2D(zθ|ξ, ω). (2)

By taking the gradient of log p̃3D(θ), we can directly obtain
∇θ log p3D(θ), since the normalizing constant is irrelevant
to θ. Using the chain rule, we obtain:

∇θ log p3D(θ) =
∑
ξ∈Π

∇θ log p2D(zθ|ξ, ω),

= Z · Eξ∈Π [∇θ log p2D(zθ|ξ, ω)]

= Z · Eξ∈Π

[
∇zθ

log p2D(zθ|ξ, ω)
∂zθ
∂θ

]
,

(3)

where Z = |Π| is a constant, and ∇zθ
log p2D(zθ|ξ, ω) is

practically estimated by diffusion models [9]. Note that this
definition generalizes SJC [27] and even ∇θLSDS in Dream-
Fusion [16], which can be easily seen as the estimation of
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Figure 2. Illustration of our framework. We propose prompt
and score debiasing techniques to estimate robust and unbiased
gradients of the 3D parameters w.r.t. the viewpoints.

Eq. 3 with a different weighting rule and sampler. This is
further expanded by applying Bayes’ rule as follows:

= Z · Eξ∈Π

[(
∇zθ

log p2D(zθ)︸ ︷︷ ︸
Unconditional score

+∇zθ
log p2D(ξ, ω|zθ)︸ ︷︷ ︸

Pose-prompt gradient

)∂zθ
∂θ

]
.

(4)

The first gradient term, reflecting the unconditional score
modeled by 2D diffusion models [5, 25], contains a bias
that affects images viewed closely from specific viewpoints
during early 3D optimization when zθ is noisy. This con-
tributes to the Janus problem, as facial views are more
prevalent in 2D data distribution for some objects.

On the other hand, the pose-prompt gradient in Eq. 4 is
guidance [3,6,7,25] that drives the rendered image to better
represent a specific camera pose and user prompt. The term
is further expanded:

∇zθ
log p2D(ξ, ω|zθ) =∇zθ

log p2D(ξ|zθ)
+∇zθ

log p2D(ω|zθ)
+∇zθ

logC,

(5)

whereC is defined as p2D(ξ,ω|zθ)
p2D(ξ|zθ)p2D(ω|zθ)

= p2D(ξ|ω,zθ)
p2D(ξ|zθ)

, which
represents the pointwise conditional mutual information
(PCMI). If a viewpoint ξ and a user prompt ω are contradic-
tory, i.e., p2D(ξ|ω, zθ) ≪ p2D(ξ|zθ), then C approximates
to 0 for every zθ. Furthermore, the terms ∇zθ

log p2D(ξ|zθ)
and ∇zθ

log p2D(ω|zθ) have an adverse effect, making the
optimization particularly challenging.



(a) Rendered image (b) 2D score (c) Generated result
Figure 3. Visualization of the magnitude of the estimated
∇zθ log p2D(zθ|ξ, ω) during the optimization. This visualiza-
tion demonstrates that erroneous 2D scores result in critical arti-
facts, e.g., additional legs, beaks, and horns in this figure.

3. Score Debiasing
If the unconditional score, ∇zθ

log p2D(zθ), is biased to-
wards some viewing directions, which is likely in 2D data
as mentioned in Sec. 2, it can negatively affect the 3D con-
sistency and realism of generated objects through the chain
rule (Eq. 3). Moreover, large magnitudes in the user prompt
gradient, ∇zθ

log p2D(ω|zθ), can also cause issues by intro-
ducing text-related artifacts that are not present in the image
rendered from a 3D field. Such artifacts include extra faces,
beaks, and horns (see Fig. 1 and Fig. 3), which are unreal-
istic or inconsistent with the 3D object’s structure.

High magnitude in those two terms is typically observed
when the perturbed-and-denoised image by diffusion mod-
els significantly deviates from the rendered image in the
corresponding pixels (Fig. 3). Hence, adjusting this gra-
dient is necessary to reduce the artifacts and improve the
realism of the generated 3D objects. However, the 2D bias
that flows into the 3D field has hardly been formulated or
adjusted for better optimization and 3D consistency.

Dynamic thresholding of 2D-to-3D scores. In light of
the need to control the flow of 2D scores to 3D volume
(Sec. 3) and inspired by the clipping methods [12, 19], we
propose an effective method that dynamically truncates the
scores in order to mitigate the effects of bias and artifacts in
the predicted 2D scores. Specifically, we linearly increase
the truncation value throughout the optimization:

ψdynamic := (1− τ)ψstart + τψend,

∇zθ
log p2D = Clip(∇zθ

log p2D(zθ|ξ, ω), ψdynamic),
(6)

“Back view of a dog”

“Back view of a smiling dog”
Figure 4. Samples from Stable Diffusion [18] given a text
prompt with contradiction. Despite “Back view of” is given in
the prompts, the word “smiling” in the prompt makes diffusion
models biased towards the front view of an object.

where τ = (step)
(max step) and Clip(a, b) = max(min(a, b),−b).

This is a coarse-to-fine strategy [4, 13], since in the early
stages of optimization, we need to focus on the overall
structure and shape, which do not require the large magni-
tudes of the 2D scores, while in later stages, we focus more
on the details that require higher magnitudes. With this
strategy, we obtain a better trade-off between 3D consis-
tency and 2D faithfulness than statically clipping the scores.

4. Prompt Debiasing
Most text-to-3D generation methods that distill diffusion

models [10, 16, 27] achieve a certain level of view con-
sistency by concatenating view prompts (e.g., “back view
of”) with user prompts. This simple and effective method
utilizes the knowledge of large-scale text-to-image mod-
els. However, we argue that the current strategy of creating
a view-dependent prompt by simply concatenating a view
prompt with a user prompt is intrinsically problematic, as
it can result in a contradiction between them. This contra-
diction is one of the causes that make diffusion models not
follow a view prompt. Therefore, in the following subsec-
tion, we propose identifying the contradiction between the
view prompt and user prompt using off-the-shelf language
models trained with masked language modeling (MLM) [2].

Additionally, instead of naively assigning regular re-
gions to view prompt augmentations, in the next subsec-
tion, we reduce the discrepancy between the view prompt
and object-space pose by adjusting the regions.



Identifying contradiction utilizing language models.
The prompt gradient term ∇zθ

log p2D(ω|zθ) may cancel
out the pose gradient term ∇zθ

log p2D(ξ|zθ) needed for the
view consistency of generated 3D objects, as we can de-
rive from Eq. 5. For example, if the view prompt is “back
view of” and the user prompt is “a smiling dog”, it results
in a contradiction since an observer cannot see the dog’s
smile viewing from the back. This contradiction is one of
the causes that makes diffusion models not follow a view
prompt, but instead follow a word like ”smiling” in a user
prompt, as depicted in Fig. 4.

In this regard, we propose a method for identifying con-
tradictions using language models trained with masked lan-
guage modeling (MLM). Specifically, let V represent a set
of possible view prompts, and let U be a set of size 2, which
contains the presence and absence of a word in the user
prompt for brevity. We then compute the following:

PMI(v, u) =
P (v|u)∑

u′∈U P (v|u′)P (u′)
, (7)

where we can model P (v|u) with masked language model-
ing by alternating the view prompts and normalizing them,
and P (u) is a user-defined faithfulness. If P (u) = 1, the
word will never be removed from the user prompt. We then
filter out the word u that has a lower value of PMI(v, u)
than a threshold. Note that Eq. 7 is equal to the pointwise
mutual information (PMI) since:

P (v|u)∑
u′∈U P (v|u′)P (u′)

=
P (v|u)
P (v)

=
P (v, u)

P (v)P (u)
, (8)

and removing a contradiction implies removing the word
that has a low PMI with the view prompts.

Reducing discrepancy between view prompts and
object-space poses. Existing methods [10, 11, 16, 27] use
view prompt augmentations by dividing the camera space
into some regular sections (e.g., front, back, side, and over-
head in DreamFusion [16]). However, this approach does
not match the real distribution of object-space poses in
image-text pairs, e.g., front view may cover a narrower re-
gion. Therefore, we make practical adjustments to the range
of view prompts, such as reducing the azimuth range of the
”front view” by half. Furthermore, we search for precise
view prompts [16, 27] that give us improved results.

5. Comparison with Baseline
For the experiments, we use the highest-performing pub-

lic codebase of SJC [27], using the same optimization hy-
perparameters for both for a fair comparison.

As shown in the qualitative results in Fig. 1, our methods
reduce view inconsistencies in the 3D objects and mitigate
the so-called Janus problem. This improvement come with
little overhead compared to the baseline.

Method A-LPIPSVGG ↓ A-LPIPSAlex ↓

Baseline [27] 0.2054 0.1526
Debiased (Preserved) 0.1963 0.1450
Debiased (Ours) 0.1940 0.1445

Table 1. Quantitative evaluation. The best values are in bold, and
the second best are underlined. Preserved means user prompts are
preserved, i.e., P (u) = 1 for all u.

Baseline

+
Prompt
debiasing

+
Score
debiasing

Figure 5. Improvement of view consistency through prompt
and score debiasing. The baseline is original SJC [27], and
Prompt and Score denote prompt and score debiasing, respec-
tively. The given user prompt is “a smiling cat,” and the images
are rendered from arbitrary viewpoints.

We propose a new metric (Adjacent LPIPS; A-LPIPS) to
quantitatively measure the view consistency of 3D fields. It
computes the average LPIPS [28] between adjacent images
rendered from evenly spaced azimuths, using two different
backbones [1, 22]. The intuition behind this metric is that
two images from adjacent viewpoints are perceptually sim-
ilar if the 3D field is consistent. Our method produces more
consistent 3D objects than the baseline, as demonstrated in
Table 1 based on 70 prompts. Note that removing contra-
dictions in prompts leads to better results.

We present ablation results in Fig. 8, where we sequen-
tially added prompt debiasing and score debiasing on top of
the baseline. This demonstrates that they gradually improve
the view consistency and reduce artifacts as intended.

Overall, the experiments corroborate that our debiasing
methods improve the realism and alleviate the Janus prob-
lem of generated 3D objects, without requiring any 3D
guide [21] or introducing significant overhead to the zero-
shot text-to-3D setting.

6. Conclusion
In this paper, we formulate and identify the sources of

the Janus problem in zero-shot text-to-3D generation. In
this light, we argue that debiasing the prompts and raw 2D
scores is essential for the realistic generation. Therefore,
we propose two methods that increase the quality and are
applicable to existing frameworks with little overhead with-
out 3D supervision, showing potential for future research in
this promising area.
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Appendix

“a mug with a big handle”

Baseline Debiased (Ours)Stable-DreamFusion

“a cherry”

“a 3D modeling of a lion”

“a beautiful mermaid with shimmering scales and flowing hair”

“a majestic giraffe with a long neck”

“a flamingo standing on one leg in shallow water”

Figure 6. Comparison between Stable-DreamFusion [16, 26], SJC [27], and ours. The baseline is original SJC [27]. Our debiasing
methods qualitatively reduce view inconsistencies in zero-shot text-to-3D and the so-called Janus problem.



A. Background
A.1. Diffusion models

Denoising diffusion models [5, 23] generate images through progressive denoising process. During training, denoising
diffusion probabilistic models (DDPM) [5] optimize the following simplified objective:

LDDPM := Eϵ∼N (0,I),x0,t

[∥∥ϵ− ϵϕ(xt, t)
∥∥2] , (9)

where ϵϕ is a network of the diffusion model, t ∈ {T, T − 1, ..., 1} is a timestep, x0 is an original image, and xt denotes
a perturbed image according to the timestep t. During inference, starting from xT , DDPMs sample a previous sample xt−1

from a normal distribution pϕ(xt−1|xt) defined by ϕ.
Some works fit DDPM into the generalized frameworks, e.g., non-Markovian [23], score-based [9, 25], etc. Notably,

denoising diffusion models have a tight relationship with score-based models [9, 25] in the continuous form. Furthermore,
the work [9] show that denoising diffusion models can be refactored into the canonical form of denoising score matching
using the same network parameterization. This formulation further facilitates the direct computation of 2D scores [9,24] with
the following equation:

∇x log p(x;σ) =
Dϕ(x;σ)− x

σ2
, (10)

where Dϕ is an optimal denoiser network trained for every σ. With some preconditioning, a diffusion model ϵϕ [5,15,18,23]
turns into a denoiser Dϕ. In other words, 2D scores of diffusion models can be calculated this way.

Recent advancements in diffusion models have sparked increased interest in text-to-image generation [14, 17–19]. Diffu-
sion guidance techniques [3, 6, 7, 14] have been developed to enable the control of the generation process based on various
conditions such as class labels [3, 6], text captions [14], or internal information [7]. In particular, our work conditions text
prompts with classifier-free guidance [6], which is formulated as follows given a conditional diffusion model ϵϕ(xt, t, c):

ϵ̃ = ϵϕ(xt, t, c) + s · (ϵϕ(xt, t, c)− ϵϕ(xt, t)), (11)

where ϵ̃ is the guided output, and s is the guidance scale.

A.2. Score distillation

Diffusion models have shown remarkable performance in text-to-image modeling [7, 14, 17–19]. On top of this, Dream-
Fusion [16] proposes the score-distillation sampling (SDS) method that uses text-to-image diffusion models to optimize
neural fields, achieving encouraging results. The score-distillation sampling utilizes the gradient computed by the following
equation:

∇θLSDS ≜ Eϵ∼N (0,I),zθ,t

[
w(t)(ϵϕ(zt, t)− ϵ)

∂zθ
∂θ

]
, (12)

where zt denotes the t-step noised version of zθ which is a rendered image, and w(t) is a scaling function only dependent
on t. This gradient omits the Jacobian of the diffusion backbone, leading to tractable optimization of differential neural
parameters [16].

On the other hand, in light of the interpretation of diffusion models as denoisers, SJC [27] presents a new approach directly
using the score estimation for which the authors call perturb-and-average scoring (PAAS). The work shows that the U-Net
Jacobian emerging in DreamFusion is not even necessary, as well as forming a strong baseline using publicly open Stable
Diffusion [18]. The perturb-and-average score approximates to a score with an inflated noise level:

∇zθ
log p√2σ(zθ) ≈ En∼N (0,I),zθ

[
D(zθ + σn;σ)− zθ

σ2

]
, (13)

where the expectation is practically estimated by Monte Carlo sampling. This score estimate is then directly plugged into the
2D-to-3D chain rule and produces:

∇θLPAAS ≜ Ezθ

[
∇zθ

log p√2σ(zθ)
∂zθ
∂θ

]
. (14)

Although the derivation is different from SDS in DreamFusion [16], it is straightforward to show that the estimation ∇θLPAAS
is same as ∇θLSDS with a different weighting rule and sampler [9].



B. Implementation Details
B.1. Common settings

We build our debiasing methods upon the public repository of SJC [27]. For all the results, including SJC and ours, we
run 10000 steps to optimize the 3D fields. We set the hyperparameters of SJC to specific constants and do not change them
throughout the experiments.

B.2. Prompt debiasing

To compute the pointwise mutual information (PMI), we use the uncased model of BERT [2] to obtain the conditional
probability. Additionally, we set P (u) = 1 for words that should not be erroneously omitted. Otherwise, we set P (u) = 1/2.
To use a general language model for the image-related task, we concatenated “This image is depicting a” when evaluating the
PMI between the view prompt and user prompt. We first get u, v pairs such that P (v,u)

P (v)P (u) < 1. Then, given a view prompt,
we remove words whose PMI for that view prompt, normalized across all view prompts, is below 0.95.

For the view prompt augmentation, we typically follow the view prompt assignment rule of DreamFusion [16] and
SJC [27]. However, we slightly modify the view prompts and azimuth ranges for each prompt as mentioned in Sec. 4.
For example, we assign an azimuth range of [−22.5◦, 22.5◦] for the “front view.” Also, we empirically find that using a view
prompt augmentation v ∈ {“front view”, “back view”, “side view”, “top view”} without “of” depending on a viewpoint
gives us improved results for Stable Diffusion v1.5 [18].

B.3. Score debiasing

In terms of score debiasing, we gradually increase the truncation threshold from one fourth of the pre-defined threshold to
the pre-defined threshold, according to the optimization step. Specifically, we linearly increase the threshold from 2.0 to 8.0
for all experiments that leverage dynamic thresholding of 2D-to-3D scores.

B.4. Evaluation metrics (A-LPIPSVGG, Alex)

Quantitatively evaluating a zero-shot text-to-3D framework is challenging due to the absence of ground truth 3D scenes
that correspond to the text prompts. Existing works employ CLIP R-Precision [8,16]. However, it measures retrieval accuracy
through projected 2D images and text input, making it unsuitable for quantifying the view consistency of a scene.

To address this issue, a concurrent work [21] proposes a new metric that utilizes COLMAP [20] to measure the consistency
of a generated 3D scene. However, we find that this metric largely depends on the accuracy of the sequential reconstruction
provided by off-the-shelf COLMAP, which we empirically determine to be inaccurate for rendered images from SJC [27].
For instance, it occasionally omits camera poses for some images if features are not matched, resulting in extremely large
variances between distances.

Therefore, to measure the view consistency of generated 3D objects quantitatively, we compute the average LPIPS [28]
between adjacent images, which we refer to as A-LPIPS. We sample 100 uniformly spaced camera poses from an upper
hemisphere of a fixed radius, all directed towards the sphere’s center at an identical elevation, and render 100 images from a
3D scene. Then, we average the LPIPS values evaluated for all adjacent pairs of images in the 3D scene, finally aggregating
those averages across the scenes. The intuition behind this is that if there exist artifacts or view inconsistencies in a generated
3D scene, the perceptual loss will be large near those points.

C. More Results
C.1. Dynamic thresholding of 2D-to-3D scores

To show some examples of the effect of dynamic thresholding, we compare results of dynamic thresholding with those of
static thresholding and no thresholding in Fig. 7. It demostrates that dynamic clipping reduce artifacts with better realism.

C.2. Qualitative results

We present additional qualitative results in Fig. 6 and ablation results in Fig. 8. In addition to the results of SJC [27], which
serves as the baseline for our experiments, we include those of Stable-DreamFusion [26], an unofficial re-implementation
of DreamFusion [16] that utilizes Stable Diffusion [18]. The results demonstrate that our methods significantly reduces the
Janus or view inconsistency problem.
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Figure 7. Dynamic thresholding of 2D-to-3D scores.
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Figure 8. Improvement of view consistency through prompt and score debiasing. The baseline is original SJC [27], and Prompt and
Score denote prompt and score debiasing, respectively. The given user prompts are “a cute and chubby panda munching on bamboo,” and
“an unicorn with a rainbow horn.”
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