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Abstract

Diverse image completion, a problem of generating vari-
ous ways of filling incomplete regions (i.e. holes) of an image,
has made remarkable success. However, managing input
images with large holes is still a challenging problem due
to the corruption of semantically important structures. In
this paper, we tackle this problem by incorporating explicit
structural guidance. We propose a structure-guided diffusion
model (SGDM) for the large-hole diverse completion prob-
lem. Our proposed SGDM consists of a structure generator
and a texture generator, which are both diffusion probabilis-
tic models (DMs). The structure generator generates an edge
image representing a plausible structure within the holes,
which is later used to guide the texture generation process.
To jointly train these two generators, we design a strategy
that combines optimal Bayesian denoising and a momentum
framework. In addition to the quality improvement, auxiliary
edge images generated by the structure generator can be
manually edited to allow user-guided image editing. Our ex-
periments using datasets of faces (CelebA-HQ) and natural
scenes (Places) show that our method achieves a compara-
ble or superior trade-off between visual quality and diversity
compared to other state-of-the-art methods.

1. Introduction
Image completion is a task to fill missing regions (i.e.

holes) of the target image. Humans possess the creative
ability to guess the content of the missing regions in vari-
ous rational ways. Therefore, image completion methods
should ideally produce plausible yet diverse results while
maintaining consistency with the visible regions.

How can we fill in holes in images? Bertalmio et al. [1]
describe how expert conservators restore damaged artworks
as 1) figure out what content to put in missing regions, 2)
draw contour edges, and 3) paint the regions guided by
the contours. Related to the second step, previous work
[4, 22, 35] has introduced explicit structure guidance. An
additional benefit of using the guidance is to provide a user-
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Figure 1. We propose a structure-guided diffusion model
(SGDM). The SGDM first generates an edge image within missing
regions, indicated by blue regions. Then, the SGDM generates
images using the edge image as the structural guidance.

guided image editing [13,37] (see Fig. 1). However, it is still
challenging to estimate reasonable structures for large holes.

In this paper, we focus on diffusion probabilistic mod-
els (DMs) and explore incorporating structural guidance.
We propose a structure-guided diffusion model (SGDM),
which explicitly considers structural guidance using edge
information; that is, we condition the textured image genera-
tion process on an edge image. Our framework consists of
two networks: a structure generator that generates plausible
edges and a texture generator that generates textures with
the guidance of the edges, which aim to fill missing regions.

We present a novel joint-training strategy for these
DM-based networks. To achieve it, we propose using
optimal Bayesian denoising, in particular, Tweedie’s for-
mula [5, 14, 29], which can denoise noisy edge images by a
single step. However, this technique generates overly blurred
edges depending on time. Therefore, we propose adopting
a momentum framework [9, 31]. That is, we prepare two
networks during the joint training, the texture generator and
the momentum texture generator, and update the weights
of the momentum one as an exponential moving average
(EMA). This framework allows us to use generated denoised
edges and ground-truth edges simultaneously. In our experi-
ments with datasets of faces (CelebA-HQ [15]) and natural
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scenes (Places [40]), we show that our method achieves a
comparable or superior trade-off between visual quality and
diversity compared to state-of-the-art methods.

Our contributions are summarized as follows. (1) We
propose the structure-guided diffusion probabilistic model
(SGDM) for large-hole diverse image completion. (2) We
design a novel joint-training strategy using optimal Bayesian
denoising and a momentum framework to enable end-to-end
training of the two generators. (3) We show that the SGDM
achieves a comparable or superior trade-off performance
between visual quality and diversity using CelebA-HQ [15]
and Places [40] datasets.

2. Related Work

2.1. Deterministic Image Completion

Deep-learning-based methods using GANs [8] have
demonstrated tremendous success in image completion [12,
24]. Several works utilized explicit clues such as object
edges [4, 22], foreground contours [34, 37], reference im-
ages [41], and semantic segmentation maps [19]. Nazeri
et al. [22] first proposed a two-stage framework for edges
and textures to introduce structure guidance. However, both
GAN- [35] and transformer-based [4] methods often failed
to produce valid edge maps, while the SGDM can generate
natural results as shown in Fig. 4.

2.2. Large-Hole Diverse Image Completion

Recent image completion studies have addressed more
challenging issues, which fill up multiple visually plausible
and diverse contents in a large hole [18, 38, 39]. Zheng et
al. [39] first demonstrated the diverse image completion task.
CoModGAN [38] and MAT [18] achieved a high-fidelity
quality by introducing stochastic style representation [16,17],
although their diversity was restricted due to the conditional
training procedure. BAT-Fill [36] and PUT [20] have fo-
cused on an AR transformer [2, 32]. Their approaches have
limitations on sampling orders [6], computational costs [7],
and the lack of introducing explicit structural information.

2.3. Image Completion with Diffusion Models

Previous studies [26, 28] have shown the image comple-
tion results using unconditional image generation models.
The completion can be performed by replacing the known re-
gion with the given image after each sampling step. A major
limitation of them is to produce non-semantically consistent
results. To solve it, Palette [25] learned DMs as a conditional
image synthesis. RePaint [21] proposed a conditional sam-
pling method, which alternately performs the forward and
reverse diffusion processes. However, these methods often
fail to synthesize structural contents that satisfy the given
context. Our method overcomes this limitation by explicitly

estimating the structure of missing regions and using it as
guidance.

3. Preliminary: Optimal Bayesian Denoising
Here we describe optimal Bayesian denoising, which

we use to enable our joint training. For more details of
DMs, please refer to [11, 23]. Optimal Bayesian denoising
is a technique for performing a minimum mean square error
(MMSE) denoising in a single step. To perform denoising for
a Gaussian variable z ∼ N (z;µ,Σ), an MMSE estimator
is given by Tweedie’s formula [5, 14, 29]; that is, E[µ|z] =
z+Σ∇z log p(z). In DDPM, the forward step is modeled as
q(xt|x0) = N (xt;

√
αtx0, (1− αt)I). Thus, we can apply

Tweedie’s formula here by substituting
√
αtx0 and (1−αt)I

for µ and Σ, respectively. This allows us to determine a
single-step denoising operation as

F (xt) := x̂t
0 =

xt + (1− αt)∇xt
log p(xt)√

αt
, (1)

where xt
0 represents a denoised sample. We can convert the

noisy sample into the denoised one (at time 0) by a single
step, as long as the optimal score function ∇xt log p(xt) is
known. DDIM [27] also relies on the formulation.

4. Structure-Guided Diffusion Model
Given an input image with missing regions (i.e. holes),

we aim to generate a semantically reasonable image that
respects the context of the visible regions. We denote the
target image by I ∈ R3×H×W , the binary mask representing
the missing regions by M ∈ {0, 1}1×H×W , and the gener-
ated image by Î ∈ R3×H×W , where H and W represent a
spatial resolution. With this notation, the goal is to generate
Î from IM = I ⊙M . The SGDM uses structural guidance
in its generation process. Specifically, it generates a hole-
filled edge image Ê and then uses it as structural guidance
to generate Î . This edge image Ê is generated using an edge
image with missing regions, denoted by EM , which is gen-
erated from IM using an existing edge detection algorithm,
Holistically-Nested Edge Detection (HED) [33].

4.1. Framework Architecture

Our framework consists of two DM-based networks: a
structure generator fθ and a texture generator gϕ. The struc-
ture generator aims to generate an edge image that guides
the texture generator. We attach five additional channels in
the first layer of both networks to take the conditions of the
image and edge image with missing regions.

First, the structure generator fills in the holes of the edge
image EM to produce the hole-filled edge image Ê. Then,
the texture generator produces the plausible texture with the
guidance of Ê maintaining the context of the visible regions
of I . These generations use the iterative sampling of DMs.
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Figure 2. Overview of our joint training for training a structure fθ ,
a texture gϕ, and a momentum texture generator gϕ̂. The weights
of the momentum texture generator gϕ̂ is updated as an exponential
moving average of the weights of texture generator gϕ.

4.2. Individual Training

We describe the data preparation and the training proce-
dure. Suppose we have a ground-truth image I . Then, we
extract an edge image E using HED. We degrade the image
I and the edge image E using a random binary mask M ,
denoted as the masked image IM = I ⊙M and the masked
edge image EM = E ⊙M , respectively. We create a noisy
image It and a noisy edge image Et at timestep t using
Gaussian noises ϵI and ϵE with I and E, respectively. Given
the above inputs, the generators predict outputs as follows:

fθ(Et, IM ,M,EM , t) = Êt−1, (2)

gϕ(It, IM ,M,E, t) = Ît−1. (3)

Both networks can be trained via the denoising score match-
ing loss [11] individually,

Lf = EI,M,E,t,ϵE∥fθ(Et, IM ,M,EM , t)− ϵE∥22, (4)

Lg = EI,M,E,t,ϵI∥gϕ(It, IM ,M,E, t)− ϵI∥22. (5)

4.3. Joint Training

The individually trained structure generator sometimes
generates semantically unreasonable edges. To mitigate
this issue, we propose a joint-training strategy using opti-
mal Bayesian denoising and a consistency loss, as shown
in Fig. 2. The joint training is cannot be performed in a
straightforward fashion due to time information. We apply
the single-step denoising operation in Eq. (1); that is, we
obtain a noiseless estimate by Êt

0 = F (Et).
However, the denoised edge image Êt

0 tends to be overly
blurred especially when t is close to T . We observe that the
gap between the original edge image E and the denoised
edge image Êt

0 leads to poor visual quality. To overcome
these challenges, we use the momentum framework for the
texture generator. We have observed that the training also

CelebA-HQ Large hole Small hole

Method Modeling FID ↓ Div ↑ FID ↓ Div ↑

MAT [18] GAN 3.63 0.024 1.97 0.014
BAT-Fill [36] AR 7.52 0.043 5.24 0.025
PUT [20] AR 10.37 0.039 3.96 0.039
RePaint [21] DM 8.06 0.056 4.71 0.034
Palette [25] DM 6.59 0.056 2.88 0.032

Ours DM 5.71 0.057 2.66 0.038

Table 1. Quantitative comparison on CelebA-HQ. RBG shows
good performance in this order.

Places Large hole Small hole

Method Modeling FID ↓ Div ↑ FID ↓ Div ↑

MAT [18] GAN 8.15 0.044 4.39 0.032
BAT-Fill [36] AR 21.16 0.079 8.33 0.051
PUT [20] AR 17.17 0.092 7.37 0.063
RePaint [21] DM 10.71 0.113 5.36 0.079
Palette [25] DM 26.61 0.102 10.95 0.074

Ours DM 12.30 0.095 5.95 0.064

Table 2. Quantitative comparison on Places.

becomes unstable without the two differences and the EMA-
based weight updating. To avoid corruption, we introduce
Êt

0 to an augmentation A that erases the region randomly.
The consistency loss can be formulated as

Lc = ∥F (gϕ(It, A(Ê
t
0), ·))− F (gϕ̂(It̂, E, ·))∥22, (6)

where · denotes the same condition as in Eq. (3). Finally, we
formulate our total loss for the joint training as

Ljt = Lf + Lg + Lc. (7)

5. Experiments
We conducted experiments to compare our method with

other state-of-the-art methods in terms of the trade-off be-
tween visual quality and diversity.

Datasets. The experiments were conducted with CelebA-
HQ [15] and Places [40] The image resolution of both
datasets was 256 × 256. For CelebA-HQ, we prepared a
train set and a test set with 24,183 and 5,000 images, re-
spectively. For Places, we prepared a train set and a test
set with 8 million (M) and 5,000 images. To evaluate the
diversity, we randomly selected 50 images from each test
set. For the individual training, each network was trained
for 10M images on CelebA-HQ and 20M images on Places,
respectively. Additionally, we carried out the joint training
with 10M images. For the evaluation, we generated edge
images and images using 1,000 sampling steps and 4,570
sampling steps using RePaint [21], respectively.
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Compared methods. We compared our method with the
following methods: MAT [18], BAT-Fill [36], PUT [20],
RePaint [21], ADM [3], and Palette [25] using their pre-
trained weights. RePaint, ADM, and ours used the same
pre-trained weights. The difference between RePaint and
ADM was the sampling procedure.

Evaluation metrics. We considered two different aspects:
visual quality and diversity. For the quality evaluation, we
used FID [10] using 5,000 test images. For the diversity
evaluation, we defined a diversity score for a given set of
generated images, X = {xi}Ni=1, as

Div(X ) =
2

N(N − 1)

∑
i<j

(1− CosSim(Φ(xi),Φ(xj)),

where CosSim represents a cosine similarity between two
image feature vectors and we set N = 100. We extracted
image features by InceptionV3 [30] and applied the global
average pooling to obtain the feature vector, as represented
by Φ(·). A higher score indicates that the generated set X is
more diverse. We then calculated the mean of the diversity
scores. The diversity score is not a common metric, but it
can measure how well a large hole can be filled.

5.1. Quantitative Comparisons

Tables 1 and 2 show the completion performance on
CelebA-HQ and Places, respectively. MAT achieved the
best visual qualities although the lowest diversity. Com-
pared with RePaint, our method showed the advantage on
CelebA-HQ. However, on Places, RePaint achieved superior
or comparable results to our method. This implies that there
was a trade-off between visual quality and diversity. We con-
jecture that this was because, for visual quality, our method
often generated some artifacts when edge generation was
inaccurate. For diversity, the explicit introduction of struc-
ture would suppress the generation of samples. As a result,
our method tended to be less diverse than the methods using
DMs, especially for Places with complex natural structures.

5.2. Qualitative Comparisons

Figure 3 shows a qualitative comparison of the competing
methods. We observed that our method was able to syn-
thesize texture variations while maintaining the structural
context. This implies that the texture generator could learn
the semantic context from the partially visible region as well
as from the edges. RePaint and Palette, which use diffu-
sion models, generated plausible images, but the semantic
consistency was insufficient.

We also show comparisons between our method and ex-
isting GAN-based methods with structural guidance, Deep-
Fillv2 [35] and ZITS [4], in Fig. 4. They failed to generate
valid edge images for large holes. Although ZITS used the

Input Ours 1 Ours 2

MAT BAT-Fill PUT RePaint Palette

Input Ours 3 Ours 4

MAT BAT-Fill PUT RePaint Palette

Figure 3. Qualitative comparisons of the proposed SGDM with
the state-of-the-art methods.

Masked
image

Edge DeepFill v2 ZITS

Our variations 1 Our variations 2

Figure 4. Visual comparison among image completion methods
with structural guidance [4, 35].

transformer for the global receptive field, it generated incom-
pleted edges and blurred textures. In contrast, our diffusion-
based method could generate plausible edges and images
even for large masked regions, achieving higher quality.

6. Conclusion
We have presented the first diffusion-based model that

considers structural guidance in the image generation pro-
cess, called the structure-guided diffusion model (SGDM).
The SGDM can generate rational structures and visually real-
istic textures. We have proposed a novel training strategy to
enable effective end-to-end training. Extensive experiments
show that the SGDM achieves a comparable or superior vi-
sual quality and diversity trade-off on CelebA-HQ and Places
as compared with the state-of-the-art. Explicitly incorporat-
ing structural guidance using edge information has not only
improved the visual quality but also enabled user-guided
image editing.
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Munos, and Michal Valko. Bootstrap Your Own Latent: A
New Approach to Self-Supervised Learning. In NeurIPS,
2020. 1

[10] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, Günter Klambauer, and Sepp Hochreiter. GANs
Trained by a Two Time-Scale Update Rule Converge to a
Nash Equilibrium. In NeurIPS, 2017. 4

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffu-
sion Probabilistic Models. In NeurIPS, 2020. 2, 3

[12] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.
Globally and Locally Consistent Image Completion. ACM
TOG, 36(4), 2017. 2

[13] Youngjoo Jo and Jongyoul Park. SC-FEGAN: Face Edit-
ing Generative Adversarial Network With User’s Sketch and
Color. In ICCV, 2019. 1

[14] Miyasawa K. An empirical Bayes estimator of the mean of a
normal population. Bull. Inst. Internat. Statist., 38:181–188,
1961. 1, 2

[15] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive Growing of GANs for Improved Quality, Stability,
and Variation. In ICLR, 2018. 1, 2, 3

[16] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based
Generator Architecture for Generative Adversarial Networks.
In CVPR, 2019. 2

[17] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and Improving
the Image Quality of StyleGAN. In CVPR, 2020. 2

[18] Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and Jiaya
Jia. MAT: Mask-Aware Transformer for Large Hole Image
Inpainting. In CVPR, 2022. 2, 3, 4

[19] Liang Liao, Jing Xiao, Zheng Wang, Chia-Wen Lin, and
Shin’ichi Satoh. Image Inpainting Guided by Coherence
Priors of Semantics and Textures. In CVPR, 2021. 2

[20] Qiankun Liu, Zhentao Tan, Dongdong Chen, Qi Chu, Xiyang
Dai, Yinpeng Chen, Mengchen Liu, Lu Yuan, and Nenghai
Yu. Reduce Information Loss in Transformers for Pluralistic
Image Inpainting. In CVPR, 2022. 2, 3, 4

[21] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher
Yu, Radu Timofte, and Luc Van Gool. RePaint: Inpainting
Using Denoising Diffusion Probabilistic Models. In CVPR,
2022. 2, 3, 4

[22] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and
Mehran Ebrahimi. EdgeConnect: Structure Guided Image
Inpainting using Edge Prediction. In ICCVW, 2019. 1, 2

[23] Alex Nichol and Prafulla Dhariwal. Improved Denoising
Diffusion Probabilistic Models. In ICML, 2021. 2

[24] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor
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