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Abstract

The generalization with respect to domain shifts, as they
frequently appear in applications such as autonomous driv-
ing, is one of the remaining big challenges for deep learning
models. Therefore, we propose an intra-source style aug-
mentation (ISSA) method to improve domain generalization
in semantic segmentation. Our method is based on a novel
masked noise encoder for StyleGAN2 inversion. The model
learns to faithfully reconstruct the image, preserving its se-
mantic layout through noise prediction. Random masking
of the estimated noise enables the style mixing capability
of our model, i.e. it allows to alter the global appearance
without affecting the semantic layout of an image. Using
the proposed masked noise encoder to randomize style and
content combinations in the training set, ISSA effectively
increases the diversity of training data and reduces spurious
correlation. As a result, we achieve up to 11.3% mIoU im-
provements on driving-scene semantic segmentation under
domain shifts, e.g., adverse weather conditions.

1. Introduction

The varying environment with potentially diverse illu-
mination and adverse weather conditions makes the de-
ployment of deep learning models challenging in an open-
world [20, 31]. Therefore, improving the generalization
capability of neural networks is crucial for safety-critical
applications such as autonomous driving (see for example
Fig. 1). While generally the target domains can be inaccessi-
ble or unpredictable at training time, it is important to train
a generalizable model, based on the known (source) domain,
which may offer only a limited or biased view of the real
world [3, 21].

Diversity of the training data is considered to play an
important role for domain generalization, including natural
distribution shifts [22]. However, for pixel-level prediction
tasks such as semantic segmentation, collecting diverse train-
ing data involves a tedious and costly annotation process [4].
Therefore, improving generalization from a single source do-
main is exceptionally compelling, particularly for semantic
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Figure 1. Semantic segmentation results of HRNet [23] on unseen
domain (snow), trained on Cityscapes [5] and tested on ACDC [20].
The model trained with our ISSA can successfully segment the
truck, while the baseline model fails completely.

segmentation.
One pragmatic way to improve data diversity is by ap-

plying data augmentation. One line of data augmentation
techniques focuses on increasing the content diversity in the
training set, such as geometric transformation (e.g., cropping
or flipping), CutOut [6], and CutMix [29]. However, they are
ineffective on natural domain shifts as reported in [22]. Style
augmentation, on the other hand, only modifies the style - the
non-semantic appearance such as texture and color of the im-
age [8] - while preserving the semantic content. Hendrycks
corruptions [10] provide a wide range of synthetic styles,
including weather conditions. However, they are not always
realistic looking, thus being still far from resembling nat-
ural data shifts. In this work, we propose an intra-source
style augmentation (ISSA) strategy for semantic segmenta-
tion, aiming to improve the style diversity in the training set
without extra labeling effort or using extra data sources.

Our augmentation technique is based on the inversion of
StyleGAN2 [16], which is the state-of-the-art unconditional
Generative Adversarial Network (GAN) and thus ensures
high quality and realism of synthetic samples. GAN inver-
sion allows to encode a given image to latent variables, and
thus facilitates faithful reconstruction with style mixing ca-
pability. To realize ISSA, we learn to separate semantic
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Figure 2. Qualitative results (best view in color and zoom in) of StyleGAN2 inversion methods on Cityscapes, i.e., pSp†, Feature-Style
encoder [26] and our masked noise encoder. Note, pSp† is an improved version of pSp [18] introduced by us. pSp† can reconstruct the
rough layout of the scene but still struggles to preserve details. The Feature-Style encoder shows a better reconstruction quality, yet it cannot
faithfully reconstruct small objects (e.g. pedestrian), and some objects (e.g. the vehicle, bicycle) are rather blurry. Our masked noise encoder
has highest image fidelity, preserving finer details in the inverted image.

Figure 3. Method overview. Our encoder is built on top of the pSp encoder [18], shown in the blue area (A). In addition to mapping the
input image to the extended latent space W+ of the pre-trained StyleGAN2 generator, our encoder predicts the noise map at an intermediate
scale, illustrated in the orange area (B), to promote the reconstruction quality on complex scene-centric dataset, e.g., Cityscapes. M stands
for random noise masking, regularization for the encoder training. Without it, the noise map overtakes the latent codes in encoding the
image style, so that the latter cannot make any perceivable changes on the reconstructed image, thus making style mixing impossible.

content from style information based on a single source do-
main. This allows to alter the style of an image while leaving
the content unchanged. Specifically, we make use of the
styles extracted within the source domain and mix them up.
Thus, we can increase the data diversity and alleviate the
spurious correlation in the given training data.

The faithful reconstruction of images with complex struc-
tures such as driving scenes is non-trivial. Prior meth-
ods [2, 7, 18, 19, 26] are mainly tested on simple single-
object-centric datasets, e.g., CelebA-HQ [13], FFHQ [15],
or LSUN [28]. As shown in [1], extending the native latent
space of StyleGAN2 with a stochastic noise space can lead
to improved inversion quality. However, all style and content
information will be embedded in the noise map, leaving the
latent codes inactive in this setting. Therefore, to enable

the precise reconstruction of complex driving scenes as well
as style mixing, we propose a masked noise encoder for
StyleGAN2. The proposed random masking regularization
on the noise map encourages the generator to rely on the
latent prediction for reconstruction. Thus, it allows to effec-
tively separate content and style information and facilitates
realistic style mixing, as shown in Fig. 2.

In summary, we make the following contributions:

• We propose a masked noise encoder for GAN inversion,
which enables high quality reconstruction and style
mixing of complex scene-centric datasets.

• We explore GAN inversion for intra-source data aug-
mentation, which can improve generalization under
natural distribution shifts on semantic segmentation.



• We demonstrate ISSA can promote domain generaliza-
tion performance on driving-scene semantic segmenta-
tion across different network architectures.

2. Method
2.1. Intra-Source Style Augmentation (ISSA)

ISSA employs GAN inversion to modify styles of the
training samples while preserving their semantic content. In
doing so, it diversifies the source training set and reduces
spurious style-content correlations. Because the content
of images is preserved and only the style is changed, the
ground truth label maps can be re-used for training, without
requiring any further annotation effort.

StyleGAN [14–16] can synthesize scene-centric datasets
like Cityscapes [5] and BDD100K [27]. However, existing
GAN inversion encoders cannot provide the desired fidelity
to enable ISSA to improve domain generalization of seman-
tic segmentation via data augmentation. Loss of fine details
or inauthentic reconstruction of small-scale objects would
harm the model’s generalization ability. Therefore, we pro-
pose a novel encoder design to invert StyleGAN2, termed
masked noise encoder (see Fig. 3), which can faithfully re-
construct complex scenes and separately encode the style
and content information.

2.2. Masked Noise Encoder

We build our encoder upon the pSp encoder [18]. It em-
ploys a feature pyramid [17] to extract multi-scale features
from a given image, see Fig. 3-(A). We improve over pSp
by identifying in which latent space to embed the input im-
age for the high-quality reconstruction of the images with
complex street scenes. Further, we propose a novel training
scheme to enable the style-content disentanglement of the
encoder, thus improving its style mixing capability.

Additive Noise Map. Due to the gap between the real and
synthetic data distributions [18], we predict latent code in
the extended latent space W+ rather than W of StyleGAN2.
However, the latent codes {wk} from W+ alone are not ex-
pressive enough to reconstruct images with diverse semantic
layouts such as Cityscapes [5] as shown in Fig. 2-(pSp†).
To address this issue, our encoder additionally predicts the
additive noise map ε of the StyleGAN2 at an intermediate
scale, i.e., map2noise in Fig. 3-(B).

Random Noise Masking. While offering high-quality re-
construction, the additive noise map can be too expressive
so that it encodes nearly all perceivable details of the input
image. This results in a poor style-content disentanglement
and can damage the style mixing capability of the encoder
(see Fig. 4). To avoid this undesired effect, we propose to
regularize the noise prediction of the encoder by random
masking of the noise map. Note that the random mask-
ing as a regularization technique has also been successfully
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Figure 4. Style mixing effect enabled by random noise masking
(best view in color). The encoder trained without masking cannot
change the style of the given Content image. In contrast, the
encoder trained with masking can modify it using the style from
the given Style image.

used in reconstruction-based self-supervised learning [9, 25].
In particular, we spatially divide the noise map into non-
overlapping P × P patches, see M in Fig. 3-(B). Based
on a pre-defined ratio ρ, a subset of patches is randomly
selected and replaced by patches of unit Gaussian random
variables ϵ ∼ N(0, 1) of the same size. N(0, 1) is the prior
distribution of the noise map at training the StyleGAN2 gen-
erator. We call this encoder masked noise encoder as it is
trained with random masking to predict the noise map.

The proposed random masking reduces the encoding ca-
pacity of the noise map, hence encouraging the encoder
to jointly exploit the latent codes {wk} for reconstruction.
Fig. 4 visualizes the style mixing effect.

3. Experiments
Datasets. We conduct extensive experiments using the
following driving scene datasets: Cityscapes (CS) [5],
ACDC [20]. Cityscapes is collected under good/medium
weather conditions during daytime, primarily in Germany.
ACDC contains four adverse weather conditions (rain, fog,
snow, night) and is collected in Switzerland. The default set-
ting is to use Cityscapes as the source training data, whereas
the validation set of ACDC represents unseen target domains
with different types of natural shifts, i.e., used only for test-
ing. We consider a single source domain for training.

Masked Noise Encoder. Table 2 shows that our
masked noise encoder considerably outperforms two strong
StyleGAN2 inversion baselines pSp [18] and Feature-Style
encoder [26] in all three evaluation metrics. The achieved
low values of MSE, LPIPS [30] and FID [11] indicate its
high-quality reconstruction. pSp† is an improved version of
pSp introduced by us, which is trained with ground truth la-
tent codes wgt for better initialization. While pSp† improves
over pSp in MSE and FID, it still underperforms compared
to the others.

Domain Generalization. Table 1 reports the mIoU scores
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Figure 5. Visual examples of style mixing on BDD100K (best view in color) enabled by our masked noise encoder. By combining the latent
codes {wk

s} of Is and the noise map εc of Ic, the synthesized images G(wk
s , εc) preserve the content of Ic with a new style resembling Is.

HRNet [23] SegFormer [24]
Method CS Rain Fog Snow Night Avg. CS Rain Fog Snow Night Avg.

Baseline 70.47 44.15 58.68 44.20 18.90 41.48 67.90 50.22 60.52 48.86 28.56 47.04

CutMix [29] 72.68 42.48 58.63 44.50 17.07 40.67 69.23 49.53 61.58 47.42 27.77 46.57
Weather [10] 69.25 50.78 60.82 38.34 22.82 43.19 67.41 54.02 64.74 49.57 28.50 49.21
StyleMix [12] 57.40 40.59 49.11 39.14 19.34 37.04 65.30 53.54 63.86 49.98 28.93 49.08
ISSA (Ours) 70.30 50.62 66.09 53.30 30.18 50.05 67.52 55.91 67.46 53.19 33.23 52.45

Oracle 70.29 65.67 75.22 72.34 50.39 65.90 68.24 63.67 74.10 67.97 48.79 63.56

Table 1. Comparison of data augmentation for improving domain generalization, i.e., from Cityscapes (train) to ACDC (unseen). The mean
Intersection over Union (mIoU) is reported on Cityscapes (CS), four individual scenarios of ACDC (Rain, Fog, Snow and Night) and the
whole ACDC (Avg.). Oracle indicates the supervised training on both Cityscapes and ACDC, serving as an upper bound on ACDC for the
other methods. Note, it is not supposed to be an upper bound on Cityscapes. Underline denotes worse results than the baseline on ACDC.
ISSA performs the best and consistently improves the mIoU in all four scenarios of ACDC using both HRNet and SegFormer.

Method MSE ↓ LPIPS ↓ FID ↓

pSp [18] 0.078 0.348 130.62
pSp† [18] 0.049 0.339 14.60
Feature-Style [26] 0.025 0.220 7.14
Ours 0.011 0.124 3.94

Table 2. Reconstruction quality on Cityscapes at the resolution
128×256. The proposed masked noise encoder (Ours) consistently
outperforms pSp, pSp† and the feature-style encoder. Note, pSp† is
introduced by us, by training pSp with an additional discriminator
and incorporating synthesized images for better initialization.

of Cityscapes to ACDC domain generalization using two
semantic segmentation models, i.e., HRNet [23] and Seg-
Former [24]. ISSA is compared with three representative
data augmentations methods, i.e., CutMix [29], Hendrycks’s
weather corruptions [10], and StyleMix [12]. Remarkably,
our ISSA is the top performing method, consistently improv-
ing mIoU in both models and across all four different sce-
narios of ACDC, i.e., rain, fog, snow and night. Compared
to HRNet, SegFormer is more robust against the considered
domain shifts.

In contrast to the others, CutMix mixes up the content

rather than the style. It improves the in-distribution perfor-
mance on Cityscapes, but this gain does not extend to domain
generalization. Hendrycks’s weather corruptions can be seen
as the synthetic version of Cityscapes under the rain, fog,
and snow weather conditions. While already mimicking
ACDC at training, it can still degrade ACDC-snow by more
than 5.8% in mIoU using HRNet. StyleMix [12] also seeks
to mix up styles. However, due to its poor synthetic image
quality, it could even hurt the performance.

4. Conclusion
In this paper, we propose a GAN inversion based data

augmentation method ISSA for learning domain generalized
semantic segmentation using restricted training data from
a single source domain. The key enabler for ISSA is the
masked noise encoder, which is capable of preserving fine-
grained content details and allows style mixing between
images without affecting the semantic content. We verify
the effectiveness of ISSA on domain generalization across
different datasets and network architectures.
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